Nuprl Lemma : bag-splits_wf_list

T:Type. ∀b:T List.  (bag-splits(b) ∈ (bag(T) × bag(T)) List)


Proof




Definitions occuring in Statement :  bag-splits: bag-splits(b) bag: bag(T) list: List all: x:A. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q bag-splits: bag-splits(b) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] single-bag: {x} cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bag-append: as bs bag-map: bag-map(f;bs)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases list_ind_nil_lemma cons_wf bag_wf empty-bag_wf nil_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int list_ind_cons_lemma append_wf map_wf bag-append_wf single-bag_wf pi1_wf pi2_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry cumulativity applyEquality because_Cache unionElimination productEquality independent_pairEquality promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination universeEquality

Latex:
\mforall{}T:Type.  \mforall{}b:T  List.    (bag-splits(b)  \mmember{}  (bag(T)  \mtimes{}  bag(T))  List)



Date html generated: 2017_10_01-AM-08_59_44
Last ObjectModification: 2017_07_26-PM-04_41_48

Theory : bags


Home Index