Step
*
of Lemma
bag-summation-equal-implies-all-equal
∀[T:Type]. ∀[b:bag(T)]. ∀[f,g:{x:T| x ↓∈ b} ⟶ ℤ].
(∀x:T. (x ↓∈ b
⇒ (f[x] = g[x] ∈ ℤ))) supposing ((Σ(x∈b). g[x] ≤ Σ(x∈b). f[x]) and (∀x:T. (x ↓∈ b
⇒ (f[x] ≤ g[x]))))
BY
{ TACTIC:(RepeatFor 2 (Intro)
THEN (InstLemma `bag-summation-equal-implies-all-equal-1` [⌜{x:T| x ↓∈ b} ⌝ ;⌜b⌝]⋅
THENA (Auto THEN BLemma `bag-subtype` THEN Auto)
)
THEN RepeatFor 2 (ParallelLast')) }
1
1. [T] : Type
2. [b] : bag(T)
3. [f] : {x:T| x ↓∈ b} ⟶ ℤ
4. [g] : {x:T| x ↓∈ b} ⟶ ℤ
5. (∀x:{x:T| x ↓∈ b} . (x ↓∈ b
⇒ (f[x] = g[x] ∈ ℤ))) supposing
((Σ(x∈b). g[x] ≤ Σ(x∈b). f[x]) and
(∀x:{x:T| x ↓∈ b} . (x ↓∈ b
⇒ (f[x] ≤ g[x]))))
⊢ (∀x:T. (x ↓∈ b
⇒ (f[x] = g[x] ∈ ℤ))) supposing ((Σ(x∈b). g[x] ≤ Σ(x∈b). f[x]) and (∀x:T. (x ↓∈ b
⇒ (f[x] ≤ g[x]))))
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[b:bag(T)]. \mforall{}[f,g:\{x:T| x \mdownarrow{}\mmember{} b\} {}\mrightarrow{} \mBbbZ{}].
(\mforall{}x:T. (x \mdownarrow{}\mmember{} b {}\mRightarrow{} (f[x] = g[x]))) supposing
((\mSigma{}(x\mmember{}b). g[x] \mleq{} \mSigma{}(x\mmember{}b). f[x]) and
(\mforall{}x:T. (x \mdownarrow{}\mmember{} b {}\mRightarrow{} (f[x] \mleq{} g[x]))))
By
Latex:
TACTIC:(RepeatFor 2 (Intro)
THEN (InstLemma `bag-summation-equal-implies-all-equal-1` [\mkleeneopen{}\{x:T| x \mdownarrow{}\mmember{} b\} \mkleeneclose{} ;\mkleeneopen{}b\mkleeneclose{}]\mcdot{}
THENA (Auto THEN BLemma `bag-subtype` THEN Auto)
)
THEN RepeatFor 2 (ParallelLast'))
Home
Index