Nuprl Lemma : bag-summation-equal-implies-all-equal
∀[T:Type]. ∀[b:bag(T)]. ∀[f,g:{x:T| x ↓∈ b}  ⟶ ℤ].
  (∀x:T. (x ↓∈ b 
⇒ (f[x] = g[x] ∈ ℤ))) supposing ((Σ(x∈b). g[x] ≤ Σ(x∈b). f[x]) and (∀x:T. (x ↓∈ b 
⇒ (f[x] ≤ g[x]))))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-summation: Σ(x∈b). f[x]
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
comm: Comm(T;op)
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
bag_wf, 
bag-subtype, 
bag-member_wf, 
bag-summation-equal-implies-all-equal-1, 
le_wf, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
bag-summation_wf, 
bag-member-subtype-2, 
sq_stable__bag-member
Rules used in proof : 
universeEquality, 
intEquality, 
universeIsType, 
setIsType, 
functionIsType, 
inhabitedIsType, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
cumulativity, 
hypothesis, 
hypothesisEquality, 
setEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
because_Cache, 
dependent_set_memberEquality, 
applyEquality, 
sqequalRule, 
lemma_by_obid, 
lambdaFormation, 
independent_isectElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
independent_functionElimination, 
rename, 
setElimination, 
unionElimination, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
addEquality, 
functionExtensionality, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[f,g:\{x:T|  x  \mdownarrow{}\mmember{}  b\}    {}\mrightarrow{}  \mBbbZ{}].
    (\mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (f[x]  =  g[x])))  supposing 
          ((\mSigma{}(x\mmember{}b).  g[x]  \mleq{}  \mSigma{}(x\mmember{}b).  f[x])  and 
          (\mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (f[x]  \mleq{}  g[x]))))
Date html generated:
2019_10_15-AM-11_03_56
Last ObjectModification:
2018_09_27-AM-11_07_29
Theory : bags
Home
Index