Nuprl Lemma : bag-member-subtype-2
∀[A:Type]. ∀b:bag(A). ∀x:A.  (x ↓∈ b 
⇒ x ↓∈ b)
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
bag-member: x ↓∈ bs
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
l_all: (∀x∈L.P[x])
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
respects-equality: respects-equality(S;T)
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
less_than: a < b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
label: ...$L... t
, 
permutation: permutation(T;L1;L2)
Lemmas referenced : 
bag-member_wf, 
bag_wf, 
istype-universe, 
sq_stable__bag-member, 
bag-subtype, 
list-set-type2, 
int_seg_wf, 
length_wf, 
select_member, 
subtype-respects-equality, 
list_wf, 
list-subtype-bag, 
l_member_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
l_member-settype, 
respects-equality-bag, 
respects-equality-set-trivial, 
permutation_wf, 
permutation_transitivity, 
l_all_functionality_wrt_permutation, 
permutation_inversion, 
bag-member-select, 
quotient-member-eq, 
permutation-equiv, 
inject_wf, 
permute_list_wf, 
strong-subtype-equal-lists, 
strong-subtype-set3, 
strong-subtype-self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
functionIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality, 
setEquality, 
dependent_set_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
natural_numberEquality, 
dependent_pairFormation_alt, 
independent_pairFormation, 
productIsType, 
equalityIstype, 
because_Cache, 
setElimination, 
rename, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
setIsType, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
promote_hyp, 
sqequalBase, 
applyEquality
Latex:
\mforall{}[A:Type].  \mforall{}b:bag(A).  \mforall{}x:A.    (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  x  \mdownarrow{}\mmember{}  b)
Date html generated:
2019_10_15-AM-11_02_10
Last ObjectModification:
2018_11_30-PM-00_12_51
Theory : bags
Home
Index