Nuprl Lemma : bag-member-subtype-2

[A:Type]. ∀b:bag(A). ∀x:A.  (x ↓∈  x ↓∈ b)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag: bag(T) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q prop: bag-member: x ↓∈ bs squash: T sq_stable: SqStable(P) exists: x:A. B[x] and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a l_all: (∀x∈L.P[x]) cand: c∧ B subtype_rel: A ⊆B respects-equality: respects-equality(S;T) int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top less_than: a < b iff: ⇐⇒ Q rev_implies:  Q bag: bag(T) quotient: x,y:A//B[x; y] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] label: ...$L... t permutation: permutation(T;L1;L2)
Lemmas referenced :  bag-member_wf bag_wf istype-universe sq_stable__bag-member bag-subtype list-set-type2 int_seg_wf length_wf select_member subtype-respects-equality list_wf list-subtype-bag l_member_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma l_member-settype respects-equality-bag respects-equality-set-trivial permutation_wf permutation_transitivity l_all_functionality_wrt_permutation permutation_inversion bag-member-select quotient-member-eq permutation-equiv inject_wf permute_list_wf strong-subtype-equal-lists strong-subtype-set3 strong-subtype-self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality_alt dependent_functionElimination imageElimination imageMemberEquality baseClosed functionIsTypeImplies inhabitedIsType instantiate universeEquality setEquality dependent_set_memberEquality_alt equalityTransitivity equalitySymmetry independent_functionElimination productElimination independent_isectElimination natural_numberEquality dependent_pairFormation_alt independent_pairFormation productIsType equalityIstype because_Cache setElimination rename unionElimination approximateComputation int_eqEquality isect_memberEquality_alt voidElimination setIsType pointwiseFunctionalityForEquality pertypeElimination promote_hyp sqequalBase applyEquality

Latex:
\mforall{}[A:Type].  \mforall{}b:bag(A).  \mforall{}x:A.    (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  x  \mdownarrow{}\mmember{}  b)



Date html generated: 2019_10_15-AM-11_02_10
Last ObjectModification: 2018_11_30-PM-00_12_51

Theory : bags


Home Index