Nuprl Lemma : l_all_functionality_wrt_permutation
∀[A:Type]. ∀P:A ⟶ ℙ. ∀L1,L2:A List.  (permutation(A;L1;L2) ⇒ {(∀x∈L1.P[x]) ⇐⇒ (∀x∈L2.P[x])})
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2), 
l_all: (∀x∈L.P[x]), 
list: T List, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
l_all_iff, 
l_member_wf, 
member-permutation, 
l_all_wf, 
permutation_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}P:A  {}\mrightarrow{}  \mBbbP{}.  \mforall{}L1,L2:A  List.    (permutation(A;L1;L2)  {}\mRightarrow{}  \{(\mforall{}x\mmember{}L1.P[x])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x\mmember{}L2.P[x])\})
Date html generated:
2016_05_14-PM-02_34_13
Last ObjectModification:
2015_12_26-PM-04_20_21
Theory : list_1
Home
Index