Nuprl Lemma : respects-equality-bag
∀[A,B:Type].  respects-equality(bag(A);bag(B)) supposing respects-equality(A;B)
Proof
Definitions occuring in Statement : 
bag: bag(T), 
uimplies: b supposing a, 
respects-equality: respects-equality(S;T), 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
bag: bag(T), 
member: t ∈ T, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
permutation: permutation(T;L1;L2), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
prop: ℙ, 
respects-equality: respects-equality(S;T), 
label: ...$L... t, 
guard: {T}, 
surject: Surj(A;B;f), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
true: True, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
permute_list: (L o f)
Lemmas referenced : 
respects-equality-quotient, 
list_wf, 
permutation_wf, 
permutation-equiv, 
respects-equality-list, 
respects-equality_wf, 
istype-universe, 
permutation_inversion, 
change-equality-type, 
inject_wf, 
int_seg_wf, 
length_wf, 
permute_list_wf, 
respects-equality-list-type, 
injection-is-surjection, 
length_wf_nat, 
int_seg_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
subtype_base_sq, 
select_wf, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
permutation-length, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
select-mklist
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
inhabitedIsType, 
universeIsType, 
because_Cache, 
independent_isectElimination, 
lambdaFormation_alt, 
instantiate, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation_alt, 
independent_pairFormation, 
productIsType, 
natural_numberEquality, 
equalityIstype, 
applyLambdaEquality, 
setElimination, 
rename, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
applyEquality, 
intEquality, 
closedConclusion, 
sqequalBase, 
cumulativity, 
dependent_set_memberEquality_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
functionExtensionality
Latex:
\mforall{}[A,B:Type].    respects-equality(bag(A);bag(B))  supposing  respects-equality(A;B)
Date html generated:
2019_10_15-AM-10_59_48
Last ObjectModification:
2018_11_29-PM-07_12_40
Theory : bags
Home
Index