Nuprl Lemma : select-mklist
∀[n:ℕ]. ∀[f:ℕn ⟶ Top]. ∀[i:ℕn].  (mklist(n;f)[i] ~ f i)
Proof
Definitions occuring in Statement : 
mklist: mklist(n;f), 
select: L[n], 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
top: Top, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
mklist: mklist(n;f), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
select: L[n], 
nil: [], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
less_than: a < b, 
cons: [a / b]
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
top_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
int_seg_properties, 
primrec-unroll, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
stuck-spread, 
base_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
select-append, 
mklist_wf, 
le_wf, 
cons_wf, 
nil_wf, 
int_seg_subtype_nat, 
false_wf, 
lt_int_wf, 
assert_of_lt_int, 
lelt_wf, 
mklist_length, 
int_subtype_base, 
decidable__equal_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
functionEquality, 
unionElimination, 
because_Cache, 
productElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
promote_hyp, 
instantiate, 
cumulativity, 
dependent_set_memberEquality, 
functionExtensionality, 
applyEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  Top].  \mforall{}[i:\mBbbN{}n].    (mklist(n;f)[i]  \msim{}  f  i)
Date html generated:
2017_04_17-AM-07_41_51
Last ObjectModification:
2017_02_27-PM-04_15_06
Theory : list_1
Home
Index