Nuprl Lemma : select-mklist

[n:ℕ]. ∀[f:ℕn ⟶ Top]. ∀[i:ℕn].  (mklist(n;f)[i] i)


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) select: L[n] int_seg: {i..j-} nat: uall: [x:A]. B[x] top: Top apply: a function: x:A ⟶ B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q guard: {T} int_seg: {i..j-} lelt: i ≤ j < k mklist: mklist(n;f) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  select: L[n] nil: [] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) less_than: a < b cons: [a b]
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf top_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf int_seg_properties primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int stuck-spread base_wf intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int select-append mklist_wf le_wf cons_wf nil_wf int_seg_subtype_nat false_wf lt_int_wf assert_of_lt_int lelt_wf mklist_length int_subtype_base decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom functionEquality unionElimination because_Cache productElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed promote_hyp instantiate cumulativity dependent_set_memberEquality functionExtensionality applyEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  Top].  \mforall{}[i:\mBbbN{}n].    (mklist(n;f)[i]  \msim{}  f  i)



Date html generated: 2017_04_17-AM-07_41_51
Last ObjectModification: 2017_02_27-PM-04_15_06

Theory : list_1


Home Index