Nuprl Lemma : strong-subtype-equal-lists

[A,B:Type].  ∀[L1:A List]. ∀[L2:B List].  L1 L2 ∈ (A List) supposing L1 L2 ∈ (B List) supposing strong-subtype(A;B)


Proof




Definitions occuring in Statement :  list: List strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T implies:  Q guard: {T} squash: T true: True all: x:A. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q prop: cand: c∧ B subtype_rel: A ⊆B strong-subtype: strong-subtype(A;B) so_lambda: λ2x.t[x] so_apply: x[s] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nil: [] it: sq_type: SQType(T) less_than: a < b less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) sq_stable: SqStable(P) subtract: m le: A ≤ B
Lemmas referenced :  strong-subtype-implies list_extensionality length_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf and_wf equal_wf list_wf length_wf_nat nat_wf less_than_wf subtype_rel_list strong-subtype_wf exists_wf intformless_wf int_formula_prop_less_lemma ge_wf equal-wf-T-base colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases nil_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int cons_wf hd_wf length_of_nil_lemma cons_neq_nil length_of_cons_lemma false_wf not-ge-2 sq_stable__le condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates add-commutes add_functionality_wrt_le add-zero le-add-cancel2 reduce_hd_cons_lemma squash_wf tl_wf reduce_tl_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis because_Cache independent_isectElimination applyEquality lambdaEquality imageElimination equalitySymmetry natural_numberEquality sqequalRule imageMemberEquality baseClosed lambdaFormation dependent_functionElimination setElimination rename unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll addLevel hyp_replacement dependent_set_memberEquality equalityTransitivity applyLambdaEquality productElimination levelHypothesis cumulativity universeEquality setEquality intWeakElimination axiomEquality promote_hyp hypothesis_subsumption addEquality instantiate minusEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}[L1:A  List].  \mforall{}[L2:B  List].    L1  =  L2  supposing  L1  =  L2  supposing  strong-subtype(A;B)



Date html generated: 2017_04_14-AM-09_27_31
Last ObjectModification: 2017_02_27-PM-04_02_23

Theory : list_1


Home Index