Nuprl Lemma : strong-subtype-equal-lists
∀[A,B:Type].  ∀[L1:A List]. ∀[L2:B List].  L1 = L2 ∈ (A List) supposing L1 = L2 ∈ (B List) supposing strong-subtype(A;B)
Proof
Definitions occuring in Statement : 
list: T List, 
strong-subtype: strong-subtype(A;B), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
implies: P ⇒ Q, 
guard: {T}, 
squash: ↓T, 
true: True, 
all: ∀x:A. B[x], 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
strong-subtype: strong-subtype(A;B), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cons: [a / b], 
colength: colength(L), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
nil: [], 
it: ⋅, 
sq_type: SQType(T), 
less_than: a < b, 
less_than': less_than'(a;b), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
sq_stable: SqStable(P), 
subtract: n - m, 
le: A ≤ B
Lemmas referenced : 
strong-subtype-implies, 
list_extensionality, 
length_wf, 
select_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
and_wf, 
equal_wf, 
list_wf, 
length_wf_nat, 
nat_wf, 
less_than_wf, 
subtype_rel_list, 
strong-subtype_wf, 
exists_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
ge_wf, 
equal-wf-T-base, 
colength_wf_list, 
less_than_transitivity1, 
less_than_irreflexivity, 
list-cases, 
nil_wf, 
product_subtype_list, 
spread_cons_lemma, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
le_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
decidable__equal_int, 
cons_wf, 
hd_wf, 
length_of_nil_lemma, 
cons_neq_nil, 
length_of_cons_lemma, 
false_wf, 
not-ge-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel2, 
reduce_hd_cons_lemma, 
squash_wf, 
tl_wf, 
reduce_tl_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalitySymmetry, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
lambdaFormation, 
dependent_functionElimination, 
setElimination, 
rename, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
addLevel, 
hyp_replacement, 
dependent_set_memberEquality, 
equalityTransitivity, 
applyLambdaEquality, 
productElimination, 
levelHypothesis, 
cumulativity, 
universeEquality, 
setEquality, 
intWeakElimination, 
axiomEquality, 
promote_hyp, 
hypothesis_subsumption, 
addEquality, 
instantiate, 
minusEquality
Latex:
\mforall{}[A,B:Type].    \mforall{}[L1:A  List].  \mforall{}[L2:B  List].    L1  =  L2  supposing  L1  =  L2  supposing  strong-subtype(A;B)
Date html generated:
2017_04_14-AM-09_27_31
Last ObjectModification:
2017_02_27-PM-04_02_23
Theory : list_1
Home
Index