Nuprl Lemma : bag-summation-equal-implies-all-equal-1
∀[T:Type]. ∀[b:bag(T)]. ∀[f,g:T ⟶ ℤ].
  (∀x:T. (x ↓∈ b 
⇒ (f[x] = g[x] ∈ ℤ))) supposing ((Σ(x∈b). g[x] ≤ Σ(x∈b). f[x]) and (∀x:T. (x ↓∈ b 
⇒ (f[x] ≤ g[x]))))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-summation: Σ(x∈b). f[x]
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
infix_ap: x f y
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
assoc: Assoc(T;op)
, 
comm: Comm(T;op)
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
empty-bag: {}
, 
uiff: uiff(P;Q)
, 
bag-summation: Σ(x∈b). f[x]
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
cons-bag: x.b
, 
monoid_p: IsMonoid(T;op;id)
, 
ident: Ident(T;op;id)
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_or: a ↓∨ b
Lemmas referenced : 
bag_to_squash_list, 
bag-member_wf, 
le_wf, 
bag-summation_wf, 
all_wf, 
bag_wf, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
list_induction, 
list-subtype-bag, 
equal_wf, 
list_wf, 
bag-member-empty-iff, 
empty-bag_wf, 
list_accum_nil_lemma, 
bag-member-cons, 
cons-bag_wf, 
itermConstant_wf, 
int_term_value_constant_lemma, 
squash_wf, 
true_wf, 
bag-summation-cons, 
iff_weakening_equal, 
decidable__le, 
add-is-int-iff, 
intformand_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
false_wf, 
bag-summation_functionality_wrt_le, 
and_wf
Rules used in proof : 
cut, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productElimination, 
thin, 
isect_memberFormation, 
introduction, 
lambdaFormation, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
imageElimination, 
promote_hyp, 
hypothesis, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
cumulativity, 
intEquality, 
lambdaEquality, 
addEquality, 
natural_numberEquality, 
sqequalRule, 
applyEquality, 
functionExtensionality, 
independent_isectElimination, 
independent_pairFormation, 
functionEquality, 
rename, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
universeEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_functionElimination, 
independent_pairEquality, 
imageMemberEquality, 
baseClosed, 
inlFormation, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
inrFormation, 
setElimination, 
setEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[f,g:T  {}\mrightarrow{}  \mBbbZ{}].
    (\mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (f[x]  =  g[x])))  supposing 
          ((\mSigma{}(x\mmember{}b).  g[x]  \mleq{}  \mSigma{}(x\mmember{}b).  f[x])  and 
          (\mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (f[x]  \mleq{}  g[x]))))
Date html generated:
2017_10_01-AM-09_02_38
Last ObjectModification:
2017_07_26-PM-04_43_44
Theory : bags
Home
Index