Nuprl Lemma : bag-summation-cons
∀[R:Type]. ∀[add:R ⟶ R ⟶ R]. ∀[zero:R].
  ∀[T:Type]. ∀[f:T ⟶ R]. ∀[b:bag(T)]. ∀[a:T].  (Σ(x∈a.b). f[x] = (f[a] add Σ(x∈b). f[x]) ∈ R) 
  supposing IsMonoid(R;add;zero) ∧ Comm(R;add)
Proof
Definitions occuring in Statement : 
bag-summation: Σ(x∈b). f[x]
, 
cons-bag: x.b
, 
bag: bag(T)
, 
comm: Comm(T;op)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
monoid_p: IsMonoid(T;op;id)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
single-bag: {x}
, 
bag-append: as + bs
, 
cons-bag: x.b
, 
append: as @ bs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
prop: ℙ
, 
cand: A c∧ B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
true: True
, 
squash: ↓T
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
monoid_p: IsMonoid(T;op;id)
Lemmas referenced : 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
bag_wf, 
monoid_p_wf, 
comm_wf, 
single-bag_wf, 
bag-summation_wf, 
infix_ap_wf, 
equal_wf, 
squash_wf, 
true_wf, 
bag-summation-append, 
bag-summation-single, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
axiomEquality, 
because_Cache, 
cumulativity, 
functionEquality, 
universeEquality, 
productEquality, 
functionExtensionality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
lambdaEquality, 
independent_isectElimination, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[R:Type].  \mforall{}[add:R  {}\mrightarrow{}  R  {}\mrightarrow{}  R].  \mforall{}[zero:R].
    \mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  R].  \mforall{}[b:bag(T)].  \mforall{}[a:T].    (\mSigma{}(x\mmember{}a.b).  f[x]  =  (f[a]  add  \mSigma{}(x\mmember{}b).  f[x])) 
    supposing  IsMonoid(R;add;zero)  \mwedge{}  Comm(R;add)
Date html generated:
2017_10_01-AM-08_48_41
Last ObjectModification:
2017_07_26-PM-04_32_45
Theory : bags
Home
Index