Nuprl Lemma : bag-summation-cons

[R:Type]. ∀[add:R ⟶ R ⟶ R]. ∀[zero:R].
  ∀[T:Type]. ∀[f:T ⟶ R]. ∀[b:bag(T)]. ∀[a:T].  (x∈a.b). f[x] (f[a] add Σ(x∈b). f[x]) ∈ R) 
  supposing IsMonoid(R;add;zero) ∧ Comm(R;add)


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] cons-bag: x.b bag: bag(T) comm: Comm(T;op) uimplies: supposing a uall: [x:A]. B[x] infix_ap: y so_apply: x[s] and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T monoid_p: IsMonoid(T;op;id)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q single-bag: {x} bag-append: as bs cons-bag: x.b append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] prop: cand: c∧ B so_apply: x[s] so_lambda: λ2x.t[x] true: True squash: T infix_ap: y subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q monoid_p: IsMonoid(T;op;id)
Lemmas referenced :  list_ind_cons_lemma list_ind_nil_lemma bag_wf monoid_p_wf comm_wf single-bag_wf bag-summation_wf infix_ap_wf equal_wf squash_wf true_wf bag-summation-append bag-summation-single iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule extract_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality isectElimination axiomEquality because_Cache cumulativity functionEquality universeEquality productEquality functionExtensionality applyEquality equalityTransitivity equalitySymmetry independent_pairFormation lambdaEquality independent_isectElimination natural_numberEquality imageElimination imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[R:Type].  \mforall{}[add:R  {}\mrightarrow{}  R  {}\mrightarrow{}  R].  \mforall{}[zero:R].
    \mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  R].  \mforall{}[b:bag(T)].  \mforall{}[a:T].    (\mSigma{}(x\mmember{}a.b).  f[x]  =  (f[a]  add  \mSigma{}(x\mmember{}b).  f[x])) 
    supposing  IsMonoid(R;add;zero)  \mwedge{}  Comm(R;add)



Date html generated: 2017_10_01-AM-08_48_41
Last ObjectModification: 2017_07_26-PM-04_32_45

Theory : bags


Home Index