Nuprl Lemma : bag-summation_wf

[T,R:Type]. ∀[add:R ⟶ R ⟶ R]. ∀[zero:R]. ∀[f:T ⟶ R]. ∀[b:bag(T)].
  Σ(x∈b). f[x] ∈ supposing Assoc(R;add) ∧ Comm(R;add)


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] bag: bag(T) comm: Comm(T;op) assoc: Assoc(T;op) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] and: P ∧ Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bag-summation: Σ(x∈b). f[x] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s] so_apply: x[s1;s2] all: x:A. B[x] prop: true: True infix_ap: y guard: {T} assoc: Assoc(T;op) squash: T subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q implies:  Q comm: Comm(T;op)
Lemmas referenced :  bag-accum_wf assoc_wf comm_wf bag_wf equal_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin extract_by_obid isectElimination cumulativity hypothesisEquality lambdaEquality applyEquality functionExtensionality because_Cache independent_isectElimination lambdaFormation hypothesis axiomEquality equalityTransitivity equalitySymmetry productEquality isect_memberEquality functionEquality universeEquality natural_numberEquality imageElimination imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[T,R:Type].  \mforall{}[add:R  {}\mrightarrow{}  R  {}\mrightarrow{}  R].  \mforall{}[zero:R].  \mforall{}[f:T  {}\mrightarrow{}  R].  \mforall{}[b:bag(T)].
    \mSigma{}(x\mmember{}b).  f[x]  \mmember{}  R  supposing  Assoc(R;add)  \mwedge{}  Comm(R;add)



Date html generated: 2017_10_01-AM-08_48_29
Last ObjectModification: 2017_07_26-PM-04_32_39

Theory : bags


Home Index