Nuprl Lemma : bag-accum_wf
∀[T,S:Type]. ∀[init:S]. ∀[f:S ⟶ T ⟶ S]. ∀[bs:bag(T)].
  bag-accum(v,x.f[v;x];init;bs) ∈ S supposing ∀v:S. ∀x,y:T.  (f[f[v;y];x] = f[f[v;x];y] ∈ S)
Proof
Definitions occuring in Statement : 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
list_wf, 
permutation_wf, 
equal_wf, 
equal-wf-base, 
all_wf, 
bag_wf, 
permutation-invariant, 
list_accum_wf, 
squash_wf, 
true_wf, 
cons_wf, 
list_induction, 
append_wf, 
nil_wf, 
list_ind_nil_lemma, 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
list_ind_cons_lemma, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
because_Cache, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
lambdaFormation, 
rename, 
dependent_functionElimination, 
independent_functionElimination, 
productEquality, 
axiomEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
isect_memberEquality, 
functionEquality, 
universeEquality, 
addLevel, 
hyp_replacement, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
levelHypothesis, 
voidElimination, 
voidEquality, 
independent_isectElimination
Latex:
\mforall{}[T,S:Type].  \mforall{}[init:S].  \mforall{}[f:S  {}\mrightarrow{}  T  {}\mrightarrow{}  S].  \mforall{}[bs:bag(T)].
    bag-accum(v,x.f[v;x];init;bs)  \mmember{}  S  supposing  \mforall{}v:S.  \mforall{}x,y:T.    (f[f[v;y];x]  =  f[f[v;x];y])
Date html generated:
2017_10_01-AM-08_48_12
Last ObjectModification:
2017_07_26-PM-04_32_25
Theory : bags
Home
Index