Nuprl Lemma : bag-summation-append

[R:Type]. ∀[add:R ⟶ R ⟶ R]. ∀[zero:R].
  ∀[T:Type]. ∀[f:T ⟶ R]. ∀[b,c:bag(T)].  (x∈c). f[x] (x∈b). f[x] add Σ(x∈c). f[x]) ∈ R) 
  supposing IsMonoid(R;add;zero) ∧ Comm(R;add)


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] bag-append: as bs bag: bag(T) comm: Comm(T;op) uimplies: supposing a uall: [x:A]. B[x] infix_ap: y so_apply: x[s] and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T monoid_p: IsMonoid(T;op;id)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q bag: bag(T) quotient: x,y:A//B[x; y] all: x:A. B[x] implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B subtype_rel: A ⊆B monoid_p: IsMonoid(T;op;id) nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T empty-bag: {} cons: [a b] assert: b ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q uiff: uiff(P;Q) rev_implies:  Q int_iseg: {i...j} single-bag: {x} bag-append: as bs true: True ident: Ident(T;op;id) infix_ap: y assoc: Assoc(T;op) bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) comm: Comm(T;op)
Lemmas referenced :  list_wf quotient-member-eq permutation_wf permutation-equiv equal_wf bag-summation_wf bag-append_wf infix_ap_wf list-subtype-bag equal-wf-base bag_wf monoid_p_wf comm_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf length_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma non_neg_length decidable__lt lelt_wf decidable__assert null_wf list-cases bag-summation-empty empty_bag_append_lemma product_subtype_list null_cons_lemma last-lemma-sq pos_length iff_transitivity not_wf equal-wf-T-base assert_wf bnot_wf assert_of_null iff_weakening_uiff assert_of_bnot firstn_wf length_firstn itermAdd_wf int_term_value_add_lemma nat_wf length_wf_nat single-bag_wf last_wf squash_wf true_wf bag-append-assoc iff_weakening_equal list_accum_append bag-subtype-list list_accum_cons_lemma list_accum_nil_lemma subtype_rel_list top_wf list_accum_wf bag-accum_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin pointwiseFunctionalityForEquality because_Cache sqequalRule pertypeElimination equalityTransitivity hypothesis equalitySymmetry extract_by_obid isectElimination cumulativity hypothesisEquality lambdaFormation rename lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination hyp_replacement applyLambdaEquality functionExtensionality applyEquality independent_pairFormation productEquality isect_memberEquality axiomEquality functionEquality universeEquality setElimination intWeakElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality computeAll unionElimination hypothesis_subsumption dependent_set_memberEquality imageElimination promote_hyp baseClosed impliesFunctionality addEquality imageMemberEquality

Latex:
\mforall{}[R:Type].  \mforall{}[add:R  {}\mrightarrow{}  R  {}\mrightarrow{}  R].  \mforall{}[zero:R].
    \mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  R].  \mforall{}[b,c:bag(T)].    (\mSigma{}(x\mmember{}b  +  c).  f[x]  =  (\mSigma{}(x\mmember{}b).  f[x]  add  \mSigma{}(x\mmember{}c).  f[x])) 
    supposing  IsMonoid(R;add;zero)  \mwedge{}  Comm(R;add)



Date html generated: 2017_10_01-AM-08_48_37
Last ObjectModification: 2017_07_26-PM-04_32_42

Theory : bags


Home Index