Nuprl Lemma : last-lemma-sq

[T:Type]. ∀[L:T List].  firstn(||L|| 1;L) [last(L)] supposing ¬↑null(L)


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) last: last(L) length: ||as|| null: null(as) append: as bs cons: [a b] nil: [] list: List assert: b uimplies: supposing a uall: [x:A]. B[x] not: ¬A subtract: m natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: not: ¬A implies:  Q uiff: uiff(P;Q) and: P ∧ Q gt: i > j all: x:A. B[x] or: P ∨ Q false: False cons: [a b] top: Top guard: {T} nat: le: A ≤ B decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) true: True squash: T int_iseg: {i...j} cand: c∧ B less_than: a < b satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] last: last(L) ge: i ≥  int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  not_wf assert_wf null_wf list_wf assert_of_null equal-wf-T-base list-cases length_of_nil_lemma nil_wf product_subtype_list length_of_cons_lemma length_wf_nat nat_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal_wf list_decomp nth_tl_wf subtract_wf length_wf less_than_wf squash_wf true_wf length_nth_tl decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf iff_weakening_equal select-nthtl subtype_rel_list top_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma reduce_tl_nil_lemma reduce_tl_cons_lemma equal-wf-base non_neg_length nat_properties itermAdd_wf int_term_value_add_lemma append_firstn_lastn_sq lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality lambdaFormation independent_functionElimination productElimination independent_isectElimination baseClosed promote_hyp dependent_functionElimination unionElimination voidElimination hypothesis_subsumption voidEquality setElimination rename natural_numberEquality addEquality independent_pairFormation applyEquality lambdaEquality intEquality minusEquality imageElimination dependent_set_memberEquality dependent_pairFormation int_eqEquality computeAll productEquality imageMemberEquality applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    L  \msim{}  firstn(||L||  -  1;L)  @  [last(L)]  supposing  \mneg{}\muparrow{}null(L)



Date html generated: 2017_04_17-AM-07_33_17
Last ObjectModification: 2017_02_27-PM-04_11_03

Theory : list_1


Home Index