Nuprl Lemma : length_nth_tl

[A:Type]. ∀[as:A List]. ∀[n:{0...||as||}].  (||nth_tl(n;as)|| (||as|| n) ∈ ℤ)


Proof




Definitions occuring in Statement :  length: ||as|| nth_tl: nth_tl(n;as) list: List int_iseg: {i...j} uall: [x:A]. B[x] subtract: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False and: P ∧ Q ge: i ≥  le: A ≤ B cand: c∧ B less_than: a < b squash: T guard: {T} uimplies: supposing a prop: or: P ∨ Q cons: [a b] less_than': less_than'(a;b) not: ¬A colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_stable: SqStable(P) decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True subtype_rel: A ⊆B int_iseg: {i...j} exists: x:A. B[x] nat_plus: + nth_tl: nth_tl(n;as) bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than list-cases product_subtype_list colength-cons-not-zero colength_wf_list istype-void istype-le subtract-1-ge-0 subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base spread_cons_lemma sq_stable__le decidable__int_equal subtract_wf istype-false not-equal-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top le_antisymmetry_iff add_functionality_wrt_le add-commutes zero-add le-add-cancel minus-minus le_weakening2 istype-nat list_wf istype-universe le_int_wf equal-wf-base bool_wf and_wf istype-int assert_wf equal_wf zero_ann_a add-zero minus-zero iff_weakening_equal trivial-equal lt_int_wf less_than_wf bnot_wf less-iff-le int_iseg_wf length_wf non_neg_length length_wf_nat istype-sqequal not-less-implies-equal add-is-int-iff le_reflexive one-mul add-mul-special zero-mul omega-shadow two-mul mul-distributes-right mul-associates decidable__le not-le-2 length_of_nil_lemma uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int reduce_tl_nil_lemma length_of_cons_lemma reduce_tl_cons_lemma int_iseg_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination independent_pairFormation productElimination imageElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination universeIsType sqequalRule lambdaEquality_alt dependent_functionElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies unionElimination promote_hyp hypothesis_subsumption Error :memTop,  equalityIstype because_Cache dependent_set_memberEquality_alt instantiate cumulativity intEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed applyLambdaEquality addEquality minusEquality baseApply closedConclusion applyEquality sqequalBase universeEquality multiplyEquality inlFormation_alt inrFormation_alt dependent_pairFormation_alt productIsType equalityElimination hyp_replacement

Latex:
\mforall{}[A:Type].  \mforall{}[as:A  List].  \mforall{}[n:\{0...||as||\}].    (||nth\_tl(n;as)||  =  (||as||  -  n))



Date html generated: 2020_05_19-PM-09_37_03
Last ObjectModification: 2020_02_06-PM-09_36_52

Theory : list_0


Home Index