Nuprl Lemma : list_decomp
∀[T:Type]. ∀[L:T List]. L ~ [hd(L) / tl(L)] supposing 0 < ||L||
Proof
Definitions occuring in Statement :
hd: hd(l)
,
length: ||as||
,
tl: tl(l)
,
cons: [a / b]
,
list: T List
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
natural_number: $n
,
universe: Type
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
guard: {T}
,
uimplies: b supposing a
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
or: P ∨ Q
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
and: P ∧ Q
,
cons: [a / b]
,
colength: colength(L)
,
so_lambda: λ2x y.t[x; y]
,
top: Top
,
so_apply: x[s1;s2]
,
sq_stable: SqStable(P)
,
uiff: uiff(P;Q)
,
le: A ≤ B
,
not: ¬A
,
true: True
,
decidable: Dec(P)
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
subtract: n - m
,
nil: []
,
it: ⋅
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
Lemmas referenced :
nat_properties,
less_than_transitivity1,
less_than_irreflexivity,
ge_wf,
less_than_wf,
length_wf,
equal-wf-T-base,
nat_wf,
colength_wf_list,
list-cases,
length_of_nil_lemma,
reduce_tl_nil_lemma,
product_subtype_list,
spread_cons_lemma,
sq_stable__le,
le_antisymmetry_iff,
add_functionality_wrt_le,
add-associates,
add-zero,
zero-add,
le-add-cancel,
decidable__le,
false_wf,
not-le-2,
condition-implies-le,
minus-add,
minus-one-mul,
minus-one-mul-top,
add-commutes,
le_wf,
equal_wf,
subtract_wf,
not-ge-2,
less-iff-le,
minus-minus,
add-swap,
subtype_base_sq,
set_subtype_base,
int_subtype_base,
length_of_cons_lemma,
reduce_hd_cons_lemma,
reduce_tl_cons_lemma,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
lambdaFormation,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
independent_functionElimination,
voidElimination,
sqequalRule,
lambdaEquality,
dependent_functionElimination,
isect_memberEquality,
sqequalAxiom,
cumulativity,
equalityTransitivity,
equalitySymmetry,
applyEquality,
because_Cache,
unionElimination,
imageElimination,
productElimination,
promote_hyp,
hypothesis_subsumption,
voidEquality,
applyLambdaEquality,
imageMemberEquality,
baseClosed,
addEquality,
dependent_set_memberEquality,
independent_pairFormation,
minusEquality,
intEquality,
instantiate,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[L:T List]. L \msim{} [hd(L) / tl(L)] supposing 0 < ||L||
Date html generated:
2017_04_14-AM-08_47_52
Last ObjectModification:
2017_02_27-PM-03_34_39
Theory : list_0
Home
Index