Nuprl Lemma : length_firstn

[A:Type]. ∀[as:A List]. ∀[n:{0...||as||}].  (||firstn(n;as)|| n)


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) length: ||as|| list: List int_iseg: {i...j} uall: [x:A]. B[x] natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m nil: [] it: less_than: a < b int_iseg: {i...j} cand: c∧ B firstn: firstn(n;as) bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] bfalse: ff
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf int_iseg_wf length_wf equal-wf-T-base nat_wf colength_wf_list list-cases length_of_nil_lemma subtype_base_sq set_subtype_base le_wf int_subtype_base product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes equal_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap length_of_cons_lemma list_wf lt_int_wf bool_wf assert_wf le_int_wf bnot_wf decidable__equal_int not-equal-2 minus-zero le_reflexive uiff_transitivity eqtt_to_assert assert_of_lt_int list_ind_nil_lemma eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom cumulativity applyEquality because_Cache unionElimination instantiate intEquality equalityTransitivity equalitySymmetry promote_hyp hypothesis_subsumption productElimination voidEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination addEquality dependent_set_memberEquality independent_pairFormation minusEquality universeEquality productEquality equalityElimination

Latex:
\mforall{}[A:Type].  \mforall{}[as:A  List].  \mforall{}[n:\{0...||as||\}].    (||firstn(n;as)||  \msim{}  n)



Date html generated: 2017_04_14-AM-08_47_34
Last ObjectModification: 2017_02_27-PM-03_35_03

Theory : list_0


Home Index