Nuprl Lemma : bag-summation_functionality_wrt_le
∀[T:Type]. ∀[b:bag(T)]. ∀[f,g:{x:T| x ↓∈ b}  ⟶ ℤ].
  Σ(x∈b). f[x] ≤ Σ(x∈b). g[x] supposing ∀x:T. (x ↓∈ b 
⇒ (f[x] ≤ g[x]))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-summation: Σ(x∈b). f[x]
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
bag_wf, 
le_wf, 
all_wf, 
set_wf, 
sq_stable__bag-member, 
bag-subtype, 
bag-member_wf, 
bag-summation_functionality_wrt_le_1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesisEquality, 
hypothesis, 
cumulativity, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lambdaFormation, 
setElimination, 
rename, 
independent_functionElimination, 
introduction, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
lambdaEquality, 
functionEquality, 
because_Cache, 
applyEquality, 
dependent_set_memberEquality, 
intEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[f,g:\{x:T|  x  \mdownarrow{}\mmember{}  b\}    {}\mrightarrow{}  \mBbbZ{}].
    \mSigma{}(x\mmember{}b).  f[x]  \mleq{}  \mSigma{}(x\mmember{}b).  g[x]  supposing  \mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (f[x]  \mleq{}  g[x]))
Date html generated:
2016_05_15-PM-02_58_17
Last ObjectModification:
2016_01_16-AM-08_38_00
Theory : bags
Home
Index