Nuprl Lemma : bag-summation_functionality_wrt_le

[T:Type]. ∀[b:bag(T)]. ∀[f,g:{x:T| x ↓∈ b}  ⟶ ℤ].
  Σ(x∈b). f[x] ≤ Σ(x∈b). g[x] supposing ∀x:T. (x ↓∈  (f[x] ≤ g[x]))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-summation: Σ(x∈b). f[x] bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] implies:  Q set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: all: x:A. B[x] uimplies: supposing a implies:  Q sq_stable: SqStable(P) squash: T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  bag_wf le_wf all_wf set_wf sq_stable__bag-member bag-subtype bag-member_wf bag-summation_functionality_wrt_le_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality hypothesis cumulativity dependent_functionElimination equalityTransitivity equalitySymmetry independent_isectElimination lambdaFormation setElimination rename independent_functionElimination introduction sqequalRule imageMemberEquality baseClosed imageElimination lambdaEquality functionEquality because_Cache applyEquality dependent_set_memberEquality intEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[f,g:\{x:T|  x  \mdownarrow{}\mmember{}  b\}    {}\mrightarrow{}  \mBbbZ{}].
    \mSigma{}(x\mmember{}b).  f[x]  \mleq{}  \mSigma{}(x\mmember{}b).  g[x]  supposing  \mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (f[x]  \mleq{}  g[x]))



Date html generated: 2016_05_15-PM-02_58_17
Last ObjectModification: 2016_01_16-AM-08_38_00

Theory : bags


Home Index