Nuprl Lemma : bag-summation_functionality_wrt_le_1

[T:Type]. ∀[b:bag(T)]. ∀[f,g:T ⟶ ℤ].  Σ(x∈b). f[x] ≤ Σ(x∈b). g[x] supposing ∀x:T. (f[x] ≤ g[x])


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n int: universe: Type
Definitions unfolded in proof :  and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T so_lambda: λ2x.t[x] le: A ≤ B all: x:A. B[x] so_apply: x[s] cand: c∧ B sq_stable: SqStable(P) implies:  Q exists: x:A. B[x] bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) prop: not: ¬A false: False infix_ap: y decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top assoc: Assoc(T;op) comm: Comm(T;op) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] less_than': less_than'(a;b) rev_uimplies: rev_uimplies(P;Q) ge: i ≥  guard: {T}
Lemmas referenced :  bag_to_squash_list sq_stable__le bag-summation_wf le_wf less_than'_wf all_wf bag_wf decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermAdd_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf list_induction list_accum_wf list_wf list_accum_nil_lemma list_accum_cons_lemma false_wf decidable__le intformand_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_le_lemma le_functionality add_functionality_wrt_le le_weakening
Rules used in proof :  cut sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity productElimination thin isect_memberFormation introduction extract_by_obid isectElimination hypothesisEquality imageElimination because_Cache sqequalRule lambdaEquality hypothesis dependent_functionElimination independent_isectElimination independent_pairFormation independent_functionElimination promote_hyp rename hyp_replacement equalitySymmetry Error :applyLambdaEquality,  cumulativity intEquality addEquality natural_numberEquality imageMemberEquality baseClosed independent_pairEquality axiomEquality equalityTransitivity applyEquality functionExtensionality isect_memberEquality functionEquality voidElimination universeEquality unionElimination dependent_pairFormation int_eqEquality voidEquality computeAll lambdaFormation

Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[f,g:T  {}\mrightarrow{}  \mBbbZ{}].    \mSigma{}(x\mmember{}b).  f[x]  \mleq{}  \mSigma{}(x\mmember{}b).  g[x]  supposing  \mforall{}x:T.  (f[x]  \mleq{}  g[x])



Date html generated: 2016_10_25-AM-10_36_00
Last ObjectModification: 2016_07_12-AM-06_50_35

Theory : bags


Home Index