Step
*
of Lemma
bag-summation-equal2
∀[T:Type]. ∀[r:Rng]. ∀[f,g:T ⟶ |r|]. ∀[b,c:bag(T)].
Σ(x∈b). f[x] = Σ(x∈c). g[x] ∈ |r| supposing (∀x:T. (x ↓∈ b
⇒ (f[x] = g[x] ∈ |r|))) ∧ (b = c ∈ bag(T))
BY
{ (Auto
THEN (Assert Assoc(|r|;+r) ∧ Comm(|r|;+r) ∧ IsMonoid(|r|;+r;0) BY
((InstLemma `rng_plus_comm` [⌜r⌝]⋅ THENM Fold `comm` (-1))
THEN Auto
THEN RepeatFor 2 (DVar `r')
THEN Auto))
THEN RevHypSubst' (-2) 0
THEN Auto
THEN BLemma `bag-summation-equal`
THEN Auto) }
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[r:Rng]. \mforall{}[f,g:T {}\mrightarrow{} |r|]. \mforall{}[b,c:bag(T)].
\mSigma{}(x\mmember{}b). f[x] = \mSigma{}(x\mmember{}c). g[x] supposing (\mforall{}x:T. (x \mdownarrow{}\mmember{} b {}\mRightarrow{} (f[x] = g[x]))) \mwedge{} (b = c)
By
Latex:
(Auto
THEN (Assert Assoc(|r|;+r) \mwedge{} Comm(|r|;+r) \mwedge{} IsMonoid(|r|;+r;0) BY
((InstLemma `rng\_plus\_comm` [\mkleeneopen{}r\mkleeneclose{}]\mcdot{} THENM Fold `comm` (-1))
THEN Auto
THEN RepeatFor 2 (DVar `r')
THEN Auto))
THEN RevHypSubst' (-2) 0
THEN Auto
THEN BLemma `bag-summation-equal`
THEN Auto)
Home
Index