Nuprl Lemma : bag-summation-equal2
∀[T:Type]. ∀[r:Rng]. ∀[f,g:T ⟶ |r|]. ∀[b,c:bag(T)].
  Σ(x∈b). f[x] = Σ(x∈c). g[x] ∈ |r| supposing (∀x:T. (x ↓∈ b 
⇒ (f[x] = g[x] ∈ |r|))) ∧ (b = c ∈ bag(T))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-summation: Σ(x∈b). f[x]
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_zero: 0
, 
rng_plus: +r
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
comm: Comm(T;op)
, 
cand: A c∧ B
, 
rng: Rng
, 
rng_sig: RngSig
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
group_p: IsGroup(T;op;id;inv)
Lemmas referenced : 
rng_plus_comm, 
rng_all_properties, 
rng_properties, 
bag-summation-equal, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
equal_wf, 
bag-summation_wf, 
all_wf, 
bag-member_wf, 
bag_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
setElimination, 
rename, 
equalitySymmetry, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
cumulativity, 
independent_isectElimination, 
hyp_replacement, 
applyLambdaEquality, 
equalityTransitivity, 
productEquality, 
functionEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[r:Rng].  \mforall{}[f,g:T  {}\mrightarrow{}  |r|].  \mforall{}[b,c:bag(T)].
    \mSigma{}(x\mmember{}b).  f[x]  =  \mSigma{}(x\mmember{}c).  g[x]  supposing  (\mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (f[x]  =  g[x])))  \mwedge{}  (b  =  c)
Date html generated:
2017_10_01-AM-09_01_37
Last ObjectModification:
2017_07_26-PM-04_42_59
Theory : bags
Home
Index