Nuprl Lemma : bag-summation-equal2

[T:Type]. ∀[r:Rng]. ∀[f,g:T ⟶ |r|]. ∀[b,c:bag(T)].
  Σ(x∈b). f[x] = Σ(x∈c). g[x] ∈ |r| supposing (∀x:T. (x ↓∈  (f[x] g[x] ∈ |r|))) ∧ (b c ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-summation: Σ(x∈b). f[x] bag: bag(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng: Rng rng_zero: 0 rng_plus: +r rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q comm: Comm(T;op) cand: c∧ B rng: Rng rng_sig: RngSig so_lambda: λ2x.t[x] so_apply: x[s] prop: implies:  Q all: x:A. B[x] ring_p: IsRing(T;plus;zero;neg;times;one) group_p: IsGroup(T;op;id;inv)
Lemmas referenced :  rng_plus_comm rng_all_properties rng_properties bag-summation-equal rng_car_wf rng_plus_wf rng_zero_wf equal_wf bag-summation_wf all_wf bag-member_wf bag_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality hypothesis independent_pairFormation setElimination rename equalitySymmetry because_Cache sqequalRule lambdaEquality applyEquality functionExtensionality cumulativity independent_isectElimination hyp_replacement applyLambdaEquality equalityTransitivity productEquality functionEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[r:Rng].  \mforall{}[f,g:T  {}\mrightarrow{}  |r|].  \mforall{}[b,c:bag(T)].
    \mSigma{}(x\mmember{}b).  f[x]  =  \mSigma{}(x\mmember{}c).  g[x]  supposing  (\mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (f[x]  =  g[x])))  \mwedge{}  (b  =  c)



Date html generated: 2017_10_01-AM-09_01_37
Last ObjectModification: 2017_07_26-PM-04_42_59

Theory : bags


Home Index