Nuprl Lemma : bag-summation-equal

[T,R:Type]. ∀[add:R ⟶ R ⟶ R]. ∀[zero:R]. ∀[b:bag(T)]. ∀[f,g:T ⟶ R].
  Σ(x∈b). f[x] = Σ(x∈b). g[x] ∈ supposing (∀x:T. (x ↓∈  (f[x] g[x] ∈ R))) ∧ IsMonoid(R;add;zero) ∧ Comm(R;add)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-summation: Σ(x∈b). f[x] bag: bag(T) comm: Comm(T;op) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T monoid_p: IsMonoid(T;op;id)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q prop: so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] all: x:A. B[x] squash: T cand: c∧ B sq_stable: SqStable(P) true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q monoid_p: IsMonoid(T;op;id)
Lemmas referenced :  all_wf bag-member_wf equal_wf monoid_p_wf comm_wf bag_wf bag-subtype bag-summation_wf squash_wf assoc_wf set_wf true_wf sq_stable__bag-member iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis productEquality extract_by_obid isectElimination cumulativity hypothesisEquality sqequalRule lambdaEquality functionEquality applyEquality functionExtensionality isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination setEquality lambdaFormation independent_functionElimination imageElimination independent_isectElimination independent_pairFormation universeEquality setElimination rename imageMemberEquality baseClosed natural_numberEquality

Latex:
\mforall{}[T,R:Type].  \mforall{}[add:R  {}\mrightarrow{}  R  {}\mrightarrow{}  R].  \mforall{}[zero:R].  \mforall{}[b:bag(T)].  \mforall{}[f,g:T  {}\mrightarrow{}  R].
    \mSigma{}(x\mmember{}b).  f[x]  =  \mSigma{}(x\mmember{}b).  g[x] 
    supposing  (\mforall{}x:T.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (f[x]  =  g[x])))  \mwedge{}  IsMonoid(R;add;zero)  \mwedge{}  Comm(R;add)



Date html generated: 2017_10_01-AM-09_01_30
Last ObjectModification: 2017_07_26-PM-04_42_54

Theory : bags


Home Index