Step
*
of Lemma
bag-summation-linear1
∀[T,R:Type]. ∀[add,mul:R ⟶ R ⟶ R]. ∀[zero:R]. ∀[b:bag(T)]. ∀[f:T ⟶ R].
∀a:R. (Σ(x∈b). a mul f[x] = (a mul Σ(x∈b). f[x]) ∈ R)
supposing (∃minus:R ⟶ R. IsGroup(R;add;zero;minus)) ∧ Comm(R;add) ∧ BiLinear(R;add;mul)
BY
{ (InstLemma `bag-summation-linear` []
THEN RepeatFor 7 (ParallelLast')
THEN Auto
THEN (InstHyp [⌜λ2x.zero⌝;⌜a⌝] (-5)⋅ THENA Auto)
THEN (NthHypEq (-1) THEN RepeatFor 2 ((EqCD THEN Auto)))
THEN ExRepD
THEN Auto) }
1
1. T : Type
2. R : Type
3. add : R ⟶ R ⟶ R
4. mul : R ⟶ R ⟶ R
5. zero : R
6. b : bag(T)
7. f : T ⟶ R
8. ∀[g:T ⟶ R]
∀a:R. (Σ(x∈b). a mul (f[x] add g[x]) = (a mul (Σ(x∈b). f[x] add Σ(x∈b). g[x])) ∈ R)
supposing (∃minus:R ⟶ R. IsGroup(R;add;zero;minus)) ∧ Comm(R;add) ∧ BiLinear(R;add;mul)
9. minus : R ⟶ R
10. IsGroup(R;add;zero;minus)
11. Comm(R;add)
12. BiLinear(R;add;mul)
13. a : R
14. Σ(x∈b). a mul (f[x] add zero) = (a mul (Σ(x∈b). f[x] add Σ(x∈b). zero)) ∈ R
15. x : T
⊢ (a mul f[x]) = (a mul (f[x] add zero)) ∈ R
2
1. T : Type
2. R : Type
3. add : R ⟶ R ⟶ R
4. mul : R ⟶ R ⟶ R
5. zero : R
6. b : bag(T)
7. f : T ⟶ R
8. ∀[g:T ⟶ R]
∀a:R. (Σ(x∈b). a mul (f[x] add g[x]) = (a mul (Σ(x∈b). f[x] add Σ(x∈b). g[x])) ∈ R)
supposing (∃minus:R ⟶ R. IsGroup(R;add;zero;minus)) ∧ Comm(R;add) ∧ BiLinear(R;add;mul)
9. minus : R ⟶ R
10. IsGroup(R;add;zero;minus)
11. Comm(R;add)
12. BiLinear(R;add;mul)
13. a : R
14. Σ(x∈b). a mul (f[x] add zero) = (a mul (Σ(x∈b). f[x] add Σ(x∈b). zero)) ∈ R
⊢ Σ(x∈b). f[x] = (Σ(x∈b). f[x] add Σ(x∈b). zero) ∈ R
Latex:
Latex:
\mforall{}[T,R:Type]. \mforall{}[add,mul:R {}\mrightarrow{} R {}\mrightarrow{} R]. \mforall{}[zero:R]. \mforall{}[b:bag(T)]. \mforall{}[f:T {}\mrightarrow{} R].
\mforall{}a:R. (\mSigma{}(x\mmember{}b). a mul f[x] = (a mul \mSigma{}(x\mmember{}b). f[x]))
supposing (\mexists{}minus:R {}\mrightarrow{} R. IsGroup(R;add;zero;minus)) \mwedge{} Comm(R;add) \mwedge{} BiLinear(R;add;mul)
By
Latex:
(InstLemma `bag-summation-linear` []
THEN RepeatFor 7 (ParallelLast')
THEN Auto
THEN (InstHyp [\mkleeneopen{}\mlambda{}\msubtwo{}x.zero\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}] (-5)\mcdot{} THENA Auto)
THEN (NthHypEq (-1) THEN RepeatFor 2 ((EqCD THEN Auto)))
THEN ExRepD
THEN Auto)
Home
Index