Nuprl Lemma : bag-summation-linear1
∀[T,R:Type]. ∀[add,mul:R ⟶ R ⟶ R]. ∀[zero:R]. ∀[b:bag(T)]. ∀[f:T ⟶ R].
  ∀a:R. (Σ(x∈b). a mul f[x] = (a mul Σ(x∈b). f[x]) ∈ R) 
  supposing (∃minus:R ⟶ R. IsGroup(R;add;zero;minus)) ∧ Comm(R;add) ∧ BiLinear(R;add;mul)
Proof
Definitions occuring in Statement : 
bag-summation: Σ(x∈b). f[x]
, 
bag: bag(T)
, 
comm: Comm(T;op)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
group_p: IsGroup(T;op;id;inv)
, 
bilinear: BiLinear(T;pl;tm)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
prop: ℙ
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
infix_ap: x f y
, 
true: True
, 
group_p: IsGroup(T;op;id;inv)
, 
monoid_p: IsMonoid(T;op;id)
, 
guard: {T}
, 
ident: Ident(T;op;id)
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
assoc: Assoc(T;op)
Lemmas referenced : 
bag-summation-linear, 
equal_wf, 
squash_wf, 
true_wf, 
bag-summation_wf, 
exists_wf, 
group_p_wf, 
comm_wf, 
bilinear_wf, 
bag_wf, 
bag-summation-zero, 
iff_weakening_equal
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
productElimination, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
independent_isectElimination, 
independent_pairFormation, 
dependent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
axiomEquality, 
productEquality, 
functionEquality, 
functionExtensionality, 
independent_functionElimination
Latex:
\mforall{}[T,R:Type].  \mforall{}[add,mul:R  {}\mrightarrow{}  R  {}\mrightarrow{}  R].  \mforall{}[zero:R].  \mforall{}[b:bag(T)].  \mforall{}[f:T  {}\mrightarrow{}  R].
    \mforall{}a:R.  (\mSigma{}(x\mmember{}b).  a  mul  f[x]  =  (a  mul  \mSigma{}(x\mmember{}b).  f[x])) 
    supposing  (\mexists{}minus:R  {}\mrightarrow{}  R.  IsGroup(R;add;zero;minus))  \mwedge{}  Comm(R;add)  \mwedge{}  BiLinear(R;add;mul)
Date html generated:
2017_10_01-AM-08_50_53
Last ObjectModification:
2017_07_26-PM-04_32_58
Theory : bags
Home
Index