Nuprl Lemma : bag-summation-linear
∀[T,R:Type]. ∀[add,mul:R ⟶ R ⟶ R]. ∀[zero:R]. ∀[b:bag(T)]. ∀[f,g:T ⟶ R].
  ∀a:R. (Σ(x∈b). a mul (f[x] add g[x]) = (a mul (Σ(x∈b). f[x] add Σ(x∈b). g[x])) ∈ R) 
  supposing (∃minus:R ⟶ R. IsGroup(R;add;zero;minus)) ∧ Comm(R;add) ∧ BiLinear(R;add;mul)
Proof
Definitions occuring in Statement : 
bag-summation: Σ(x∈b). f[x]
, 
bag: bag(T)
, 
comm: Comm(T;op)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
group_p: IsGroup(T;op;id;inv)
, 
bilinear: BiLinear(T;pl;tm)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
group_p: IsGroup(T;op;id;inv)
, 
monoid_p: IsMonoid(T;op;id)
, 
bag-summation: Σ(x∈b). f[x]
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
top: Top
, 
infix_ap: x f y
, 
bilinear: BiLinear(T;pl;tm)
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
assoc: Assoc(T;op)
, 
comm: Comm(T;op)
, 
ident: Ident(T;op;id)
, 
inverse: Inverse(T;op;id;inv)
Lemmas referenced : 
list_wf, 
quotient-member-eq, 
permutation_wf, 
permutation-equiv, 
equal_wf, 
bag-summation_wf, 
infix_ap_wf, 
list-subtype-bag, 
equal-wf-base, 
exists_wf, 
group_p_wf, 
comm_wf, 
bilinear_wf, 
bag_wf, 
list_induction, 
all_wf, 
list_accum_wf, 
list_accum_nil_lemma, 
list_accum_cons_lemma, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
pointwiseFunctionalityForEquality, 
because_Cache, 
sqequalRule, 
pertypeElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
rename, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
functionExtensionality, 
applyEquality, 
independent_pairFormation, 
productEquality, 
axiomEquality, 
functionEquality, 
isect_memberEquality, 
universeEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T,R:Type].  \mforall{}[add,mul:R  {}\mrightarrow{}  R  {}\mrightarrow{}  R].  \mforall{}[zero:R].  \mforall{}[b:bag(T)].  \mforall{}[f,g:T  {}\mrightarrow{}  R].
    \mforall{}a:R.  (\mSigma{}(x\mmember{}b).  a  mul  (f[x]  add  g[x])  =  (a  mul  (\mSigma{}(x\mmember{}b).  f[x]  add  \mSigma{}(x\mmember{}b).  g[x]))) 
    supposing  (\mexists{}minus:R  {}\mrightarrow{}  R.  IsGroup(R;add;zero;minus))  \mwedge{}  Comm(R;add)  \mwedge{}  BiLinear(R;add;mul)
Date html generated:
2017_10_01-AM-08_48_51
Last ObjectModification:
2017_07_26-PM-04_32_47
Theory : bags
Home
Index