Nuprl Lemma : bilinear_wf

[T:Type]. ∀[pl,tm:T ⟶ T ⟶ T].  (BiLinear(T;pl;tm) ∈ ℙ)


Proof




Definitions occuring in Statement :  bilinear: BiLinear(T;pl;tm) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  bilinear: BiLinear(T;pl;tm) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s]
Lemmas referenced :  uall_wf and_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[pl,tm:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].    (BiLinear(T;pl;tm)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_02_19
Last ObjectModification: 2015_12_26-PM-11_25_33

Theory : gen_algebra_1


Home Index