Nuprl Lemma : bag-summation-zero

[T,R:Type]. ∀[add:R ⟶ R ⟶ R]. ∀[zero:R]. ∀[b:bag(T)].
  Σ(x∈b). zero zero ∈ supposing IsMonoid(R;add;zero) ∧ Comm(R;add)


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] bag: bag(T) comm: Comm(T;op) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T monoid_p: IsMonoid(T;op;id)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q prop: bag: bag(T) quotient: x,y:A//B[x; y] all: x:A. B[x] implies:  Q bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) so_lambda: λ2x.t[x] subtype_rel: A ⊆B top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] squash: T monoid_p: IsMonoid(T;op;id) assoc: Assoc(T;op) ident: Ident(T;op;id) infix_ap: y true: True
Lemmas referenced :  monoid_p_wf comm_wf bag_wf list_wf permutation_wf equal_wf equal-wf-base list_induction list_accum_wf top_wf subtype_rel_list list_accum_nil_lemma list_accum_cons_lemma squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis productEquality extract_by_obid isectElimination cumulativity hypothesisEquality functionExtensionality applyEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry functionEquality universeEquality pointwiseFunctionalityForEquality pertypeElimination lambdaFormation rename dependent_functionElimination independent_functionElimination lambdaEquality independent_isectElimination voidElimination voidEquality addLevel hyp_replacement imageElimination imageMemberEquality baseClosed natural_numberEquality levelHypothesis

Latex:
\mforall{}[T,R:Type].  \mforall{}[add:R  {}\mrightarrow{}  R  {}\mrightarrow{}  R].  \mforall{}[zero:R].  \mforall{}[b:bag(T)].
    \mSigma{}(x\mmember{}b).  zero  =  zero  supposing  IsMonoid(R;add;zero)  \mwedge{}  Comm(R;add)



Date html generated: 2017_10_01-AM-08_50_47
Last ObjectModification: 2017_07_26-PM-04_32_56

Theory : bags


Home Index