Nuprl Lemma : bag-summation-zero
∀[T,R:Type]. ∀[add:R ⟶ R ⟶ R]. ∀[zero:R]. ∀[b:bag(T)].
  Σ(x∈b). zero = zero ∈ R supposing IsMonoid(R;add;zero) ∧ Comm(R;add)
Proof
Definitions occuring in Statement : 
bag-summation: Σ(x∈b). f[x]
, 
bag: bag(T)
, 
comm: Comm(T;op)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
monoid_p: IsMonoid(T;op;id)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
prop: ℙ
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bag-summation: Σ(x∈b). f[x]
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
squash: ↓T
, 
monoid_p: IsMonoid(T;op;id)
, 
assoc: Assoc(T;op)
, 
ident: Ident(T;op;id)
, 
infix_ap: x f y
, 
true: True
Lemmas referenced : 
monoid_p_wf, 
comm_wf, 
bag_wf, 
list_wf, 
permutation_wf, 
equal_wf, 
equal-wf-base, 
list_induction, 
list_accum_wf, 
top_wf, 
subtype_rel_list, 
list_accum_nil_lemma, 
list_accum_cons_lemma, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
productEquality, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
lambdaFormation, 
rename, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaEquality, 
independent_isectElimination, 
voidElimination, 
voidEquality, 
addLevel, 
hyp_replacement, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
levelHypothesis
Latex:
\mforall{}[T,R:Type].  \mforall{}[add:R  {}\mrightarrow{}  R  {}\mrightarrow{}  R].  \mforall{}[zero:R].  \mforall{}[b:bag(T)].
    \mSigma{}(x\mmember{}b).  zero  =  zero  supposing  IsMonoid(R;add;zero)  \mwedge{}  Comm(R;add)
Date html generated:
2017_10_01-AM-08_50_47
Last ObjectModification:
2017_07_26-PM-04_32_56
Theory : bags
Home
Index