Step
*
of Lemma
bag-summation-ring-linear1
∀[T:Type]. ∀[r:Rng]. ∀[b:bag(T)]. ∀[f:T ⟶ |r|].
∀a:|r|. ((Σ(x∈b). f[x] * a = (Σ(x∈b). f[x] * a) ∈ |r|) ∧ (Σ(x∈b). a * f[x] = (a * Σ(x∈b). f[x]) ∈ |r|))
BY
{ (Auto
THEN ((InstLemma `rng_plus_comm` [⌜r⌝]⋅ THENA Auto) THEN Fold `comm` (-1))
THEN (Assert BiLinear(|r|;+r;*) ∧ (∃minus:|r| ⟶ |r|. IsGroup(|r|;+r;0;minus)) BY
(Auto THEN Try ((With ⌜-r⌝ (D 0)⋅ THEN Auto THEN RepeatFor 2 (DVar `r') THEN Complete (Auto)))))
THEN Try ((BLemma `bag-summation-linear1` THEN Auto))
THEN Try ((BLemma `bag-summation-linear1-right` THEN Auto))) }
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[r:Rng]. \mforall{}[b:bag(T)]. \mforall{}[f:T {}\mrightarrow{} |r|].
\mforall{}a:|r|. ((\mSigma{}(x\mmember{}b). f[x] * a = (\mSigma{}(x\mmember{}b). f[x] * a)) \mwedge{} (\mSigma{}(x\mmember{}b). a * f[x] = (a * \mSigma{}(x\mmember{}b). f[x])))
By
Latex:
(Auto
THEN ((InstLemma `rng\_plus\_comm` [\mkleeneopen{}r\mkleeneclose{}]\mcdot{} THENA Auto) THEN Fold `comm` (-1))
THEN (Assert BiLinear(|r|;+r;*) \mwedge{} (\mexists{}minus:|r| {}\mrightarrow{} |r|. IsGroup(|r|;+r;0;minus)) BY
(Auto
THEN Try ((With \mkleeneopen{}-r\mkleeneclose{} (D 0)\mcdot{}
THEN Auto
THEN RepeatFor 2 (DVar `r')
THEN Complete (Auto)))
))
THEN Try ((BLemma `bag-summation-linear1` THEN Auto))
THEN Try ((BLemma `bag-summation-linear1-right` THEN Auto)))
Home
Index