Nuprl Lemma : bag-summation-ring-linear1

[T:Type]. ∀[r:Rng]. ∀[b:bag(T)]. ∀[f:T ⟶ |r|].
  ∀a:|r|. ((Σ(x∈b). f[x] (x∈b). f[x] a) ∈ |r|) ∧ (x∈b). f[x] (a * Σ(x∈b). f[x]) ∈ |r|))


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] bag: bag(T) uall: [x:A]. B[x] infix_ap: y so_apply: x[s] all: x:A. B[x] and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng: Rng rng_times: * rng_zero: 0 rng_plus: +r rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] and: P ∧ Q cand: c∧ B comm: Comm(T;op) exists: x:A. B[x] rng: Rng rng_sig: RngSig prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a ring_p: IsRing(T;plus;zero;neg;times;one)
Lemmas referenced :  rng_plus_comm rng_all_properties rng_minus_wf rng_properties group_p_wf rng_car_wf rng_plus_wf rng_zero_wf bag-summation-linear1-right rng_times_wf bag-summation-linear1 bag_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination hypothesis independent_pairFormation dependent_pairFormation setElimination rename because_Cache sqequalRule lambdaEquality applyEquality independent_isectElimination dependent_functionElimination independent_pairEquality axiomEquality functionEquality isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[r:Rng].  \mforall{}[b:bag(T)].  \mforall{}[f:T  {}\mrightarrow{}  |r|].
    \mforall{}a:|r|.  ((\mSigma{}(x\mmember{}b).  f[x]  *  a  =  (\mSigma{}(x\mmember{}b).  f[x]  *  a))  \mwedge{}  (\mSigma{}(x\mmember{}b).  a  *  f[x]  =  (a  *  \mSigma{}(x\mmember{}b).  f[x])))



Date html generated: 2016_05_15-PM-02_32_21
Last ObjectModification: 2015_12_27-AM-09_47_51

Theory : bags


Home Index