Nuprl Lemma : bag-summation-ring-linear1
∀[T:Type]. ∀[r:Rng]. ∀[b:bag(T)]. ∀[f:T ⟶ |r|].
  ∀a:|r|. ((Σ(x∈b). f[x] * a = (Σ(x∈b). f[x] * a) ∈ |r|) ∧ (Σ(x∈b). a * f[x] = (a * Σ(x∈b). f[x]) ∈ |r|))
Proof
Definitions occuring in Statement : 
bag-summation: Σ(x∈b). f[x]
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_times: *
, 
rng_zero: 0
, 
rng_plus: +r
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
comm: Comm(T;op)
, 
exists: ∃x:A. B[x]
, 
rng: Rng
, 
rng_sig: RngSig
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
Lemmas referenced : 
rng_plus_comm, 
rng_all_properties, 
rng_minus_wf, 
rng_properties, 
group_p_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
bag-summation-linear1-right, 
rng_times_wf, 
bag-summation-linear1, 
bag_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
hypothesis, 
independent_pairFormation, 
dependent_pairFormation, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_pairEquality, 
axiomEquality, 
functionEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[r:Rng].  \mforall{}[b:bag(T)].  \mforall{}[f:T  {}\mrightarrow{}  |r|].
    \mforall{}a:|r|.  ((\mSigma{}(x\mmember{}b).  f[x]  *  a  =  (\mSigma{}(x\mmember{}b).  f[x]  *  a))  \mwedge{}  (\mSigma{}(x\mmember{}b).  a  *  f[x]  =  (a  *  \mSigma{}(x\mmember{}b).  f[x])))
Date html generated:
2016_05_15-PM-02_32_21
Last ObjectModification:
2015_12_27-AM-09_47_51
Theory : bags
Home
Index