Step
*
1
2
1
1
1
1
1
of Lemma
empty-bag-union
∀T:Type. ∀v:bag(T) List. ((reduce(λl,l'. (l + l');{};v) = {} ∈ bag(T))
⇒ (∀x:Top List. ((x ∈ v)
⇒ (x ~ {}))))
BY
{ (InductionOnList THEN Reduce 0 THEN Auto THEN skip{((RWO "cons_member" (-1) THENM D -1) THEN Auto)}) }
1
1. T : Type
2. u : bag(T)
3. v : bag(T) List
4. (reduce(λl,l'. (l + l');{};v) = {} ∈ bag(T))
⇒ (∀x:Top List. ((x ∈ v)
⇒ (x ~ {})))
5. (u + reduce(λl,l'. (l + l');{};v)) = {} ∈ bag(T)
6. x : Top List
7. (x ∈ [u / v])
⊢ x ~ {}
Latex:
Latex:
\mforall{}T:Type. \mforall{}v:bag(T) List. ((reduce(\mlambda{}l,l'. (l + l');\{\};v) = \{\}) {}\mRightarrow{} (\mforall{}x:Top List. ((x \mmember{} v) {}\mRightarrow{} (x \msim{} \{\})\000C)))
By
Latex:
(InductionOnList THEN Reduce 0 THEN Auto THEN skip\{((RWO "cons\_member" (-1) THENM D -1) THEN Auto)\})
Home
Index