Nuprl Lemma : empty-bag-union

T:Type. ∀bs:bag(bag(T)).  ((bag-union(bs) {} ∈ bag(T))  (bs bag-rep(#(bs);{})))


Proof




Definitions occuring in Statement :  bag-rep: bag-rep(n;x) bag-union: bag-union(bbs) bag-size: #(bs) empty-bag: {} bag: bag(T) all: x:A. B[x] implies:  Q universe: Type sqequal: t equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] bag-rep: bag-rep(n;x) concat: concat(ll) cons-bag: x.b empty-bag: {} nat: false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q subtype_rel: A ⊆B guard: {T} or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  le: A ≤ B bfalse: ff bnot: ¬bb assert: b bag-size: #(bs) bag: bag(T) quotient: x,y:A//B[x; y] true: True bag-union: bag-union(bbs) bag-append: as bs iff: ⇐⇒ Q int_seg: {i..j-} lelt: i ≤ j < k rev_implies:  Q
Lemmas referenced :  equal-wf-T-base bag_wf bag-union_wf nil_wf top_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list_wf reduce_wf append_wf nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases reduce_nil_lemma length_of_nil_lemma primrec0_lemma equal-wf-base product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int reduce_cons_lemma length_of_cons_lemma primrec-unroll length_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int non_neg_length eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int append_is_nil null_nil_lemma btrue_wf and_wf null_wf null_cons_lemma bfalse_wf btrue_neq_bfalse add-subtract-cancel permutation_wf permutation_weakening subtype_rel_list bag-subtype-list member_wf squash_wf true_wf permutation-length list_extensionality l_member_wf bag-append_wf empty-bag_wf member-implies-null-eq-bfalse cons_wf bag-append-is-empty cons_member equal-empty-bag equal-nil-sq-nil select_wf select_member lelt_wf decidable__lt member-permutation l_member_subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality baseClosed universeEquality sqequalRule setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination sqequalAxiom applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality instantiate imageElimination equalityElimination pointwiseFunctionality pertypeElimination productEquality imageMemberEquality comment hyp_replacement

Latex:
\mforall{}T:Type.  \mforall{}bs:bag(bag(T)).    ((bag-union(bs)  =  \{\})  {}\mRightarrow{}  (bs  \msim{}  bag-rep(\#(bs);\{\})))



Date html generated: 2017_10_01-AM-08_52_10
Last ObjectModification: 2017_07_26-PM-04_33_50

Theory : bags


Home Index