Nuprl Lemma : equal-nil-sq-nil

[T:Type]. ∀[L:T List].  [] supposing [] ∈ (T List)


Proof




Definitions occuring in Statement :  nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] universe: Type sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] not: ¬A implies:  Q false: False and: P ∧ Q prop:
Lemmas referenced :  no-member-sq-nil null_nil_lemma btrue_wf member-implies-null-eq-bfalse and_wf equal_wf list_wf null_wf btrue_neq_bfalse l_member_wf nil_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination lambdaFormation sqequalRule hypothesis dependent_set_memberEquality independent_pairFormation equalityTransitivity equalitySymmetry applyEquality lambdaEquality setElimination rename productElimination setEquality independent_functionElimination voidElimination because_Cache sqequalAxiom isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    L  \msim{}  []  supposing  L  =  []



Date html generated: 2016_05_14-PM-02_50_08
Last ObjectModification: 2015_12_26-PM-02_36_31

Theory : list_1


Home Index