Nuprl Lemma : equal-empty-bag
∀[T:Type]. ∀x:bag(T). ((x = {} ∈ bag(T)) 
⇒ (x ~ {}))
Proof
Definitions occuring in Statement : 
empty-bag: {}
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
empty-bag: {}
, 
or: P ∨ Q
, 
cons: [a / b]
, 
and: P ∧ Q
, 
top: Top
, 
not: ¬A
, 
false: False
Lemmas referenced : 
bag-subtype-list, 
list_wf, 
top_wf, 
equal_wf, 
equal-wf-T-base, 
bag_wf, 
list-cases, 
product_subtype_list, 
null_nil_lemma, 
btrue_wf, 
and_wf, 
null_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesis, 
sqequalRule, 
isectElimination, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
equalityTransitivity, 
independent_functionElimination, 
cumulativity, 
baseClosed, 
lambdaEquality, 
sqequalAxiom, 
because_Cache, 
universeEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
setElimination, 
rename, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[T:Type].  \mforall{}x:bag(T).  ((x  =  \{\})  {}\mRightarrow{}  (x  \msim{}  \{\}))
Date html generated:
2017_10_01-AM-08_44_55
Last ObjectModification:
2017_07_26-PM-04_30_25
Theory : bags
Home
Index