Nuprl Lemma : equal-empty-bag

[T:Type]. ∀x:bag(T). ((x {} ∈ bag(T))  (x {}))


Proof




Definitions occuring in Statement :  empty-bag: {} bag: bag(T) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q subtype_rel: A ⊆B prop: empty-bag: {} or: P ∨ Q cons: [a b] and: P ∧ Q top: Top not: ¬A false: False
Lemmas referenced :  bag-subtype-list list_wf top_wf equal_wf equal-wf-T-base bag_wf list-cases product_subtype_list null_nil_lemma btrue_wf and_wf null_wf null_cons_lemma bfalse_wf btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation hypothesisEquality applyEquality extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis sqequalRule isectElimination equalitySymmetry hyp_replacement applyLambdaEquality equalityTransitivity independent_functionElimination cumulativity baseClosed lambdaEquality sqequalAxiom because_Cache universeEquality unionElimination promote_hyp hypothesis_subsumption productElimination dependent_set_memberEquality independent_pairFormation setElimination rename isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}x:bag(T).  ((x  =  \{\})  {}\mRightarrow{}  (x  \msim{}  \{\}))



Date html generated: 2017_10_01-AM-08_44_55
Last ObjectModification: 2017_07_26-PM-04_30_25

Theory : bags


Home Index