Nuprl Lemma : bag-append-is-empty

[T:Type]. ∀as,bs:bag(T).  uiff((as bs) {} ∈ bag(T);(as {} ∈ bag(T)) ∧ (bs {} ∈ bag(T)))


Proof




Definitions occuring in Statement :  bag-append: as bs empty-bag: {} bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T true: True subtype_rel: A ⊆B top: Top bag-size: #(bs) exists: x:A. B[x] prop: nat: or: P ∨ Q empty-bag: {} cons: [a b] ge: i ≥  le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A
Lemmas referenced :  bag-size_wf bag_size_empty_lemma bag-size-append bag_to_squash_list equal-wf-T-base nat_wf bag_wf bag-append_wf list-subtype-bag empty_bag_append_lemma list-cases empty-bag_wf product_subtype_list length_of_cons_lemma non_neg_length satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation independent_pairFormation applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination because_Cache hypothesis natural_numberEquality sqequalRule imageMemberEquality hypothesisEquality baseClosed isect_memberEquality voidElimination voidEquality productElimination promote_hyp equalitySymmetry hyp_replacement Error :applyLambdaEquality,  intEquality addEquality cumulativity setElimination rename independent_isectElimination independent_pairEquality axiomEquality dependent_functionElimination equalityTransitivity productEquality universeEquality unionElimination hypothesis_subsumption dependent_pairFormation int_eqEquality computeAll

Latex:
\mforall{}[T:Type].  \mforall{}as,bs:bag(T).    uiff((as  +  bs)  =  \{\};(as  =  \{\})  \mwedge{}  (bs  =  \{\}))



Date html generated: 2016_10_25-AM-10_23_20
Last ObjectModification: 2016_07_12-AM-06_40_10

Theory : bags


Home Index