Step
*
of Lemma
sum-as-bag-accum
∀[n:ℕ]. ∀[f:ℕn ⟶ ℤ]. (Σ(f[x] | x < n) ~ bag-accum(x,y.x + y;0;[x∈bag-map(λx.f[x];upto(n))|¬b(x =z 0)]))
BY
{ (Auto THEN (RWO "sum-as-accum-filter" 0 THENA Auto) THEN RepUR ``bag-accum bag-map bag-filter`` 0 THEN Auto) }
Latex:
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[f:\mBbbN{}n {}\mrightarrow{} \mBbbZ{}].
(\mSigma{}(f[x] | x < n) \msim{} bag-accum(x,y.x + y;0;[x\mmember{}bag-map(\mlambda{}x.f[x];upto(n))|\mneg{}\msubb{}(x =\msubz{} 0)]))
By
Latex:
(Auto
THEN (RWO "sum-as-accum-filter" 0 THENA Auto)
THEN RepUR ``bag-accum bag-map bag-filter`` 0
THEN Auto)
Home
Index