Nuprl Lemma : sum-as-bag-accum

[n:ℕ]. ∀[f:ℕn ⟶ ℤ].  (f[x] x < n) bag-accum(x,y.x y;0;[x∈bag-map(λx.f[x];upto(n))|¬b(x =z 0)]))


Proof




Definitions occuring in Statement :  bag-accum: bag-accum(v,x.f[v; x];init;bs) bag-filter: [x∈b|p[x]] bag-map: bag-map(f;bs) upto: upto(n) sum: Σ(f[x] x < k) int_seg: {i..j-} nat: bnot: ¬bb eq_int: (i =z j) uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] nat: bag-map: bag-map(f;bs) bag-filter: [x∈b|p[x]] bag-accum: bag-accum(v,x.f[v; x];init;bs) all: x:A. B[x] prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_type: SQType(T) implies:  Q guard: {T}
Lemmas referenced :  subtype_base_sq int_subtype_base sum-as-accum-filter int_seg_wf list_accum_wf filter_wf5 map_wf upto_wf l_member_wf bnot_wf eq_int_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis sqequalRule hypothesisEquality lambdaEquality applyEquality natural_numberEquality setElimination rename intEquality lambdaFormation setEquality addEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom functionEquality isect_memberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].
    (\mSigma{}(f[x]  |  x  <  n)  \msim{}  bag-accum(x,y.x  +  y;0;[x\mmember{}bag-map(\mlambda{}x.f[x];upto(n))|\mneg{}\msubb{}(x  =\msubz{}  0)]))



Date html generated: 2016_05_15-PM-02_30_14
Last ObjectModification: 2015_12_27-AM-09_48_54

Theory : bags


Home Index