Nuprl Lemma : sum-as-accum-filter

[n:ℕ]. ∀[f:ℕn ⟶ ℤ].
  (f[x] x < n) accumulate (with value and list item y):
                      y
                     over list:
                       filter(λx.(¬b(x =z 0));map(λx.f[x];upto(n)))
                     with starting value:
                      0))


Proof




Definitions occuring in Statement :  upto: upto(n) sum: Σ(f[x] x < k) filter: filter(P;l) map: map(f;as) list_accum: list_accum int_seg: {i..j-} nat: bnot: ¬bb eq_int: (i =z j) uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] nat: all: x:A. B[x] implies:  Q prop: sq_type: SQType(T) guard: {T} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q bnot: ¬bb ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q assert: b false: False squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A
Lemmas referenced :  subtype_base_sq int_subtype_base sum-as-accum int_seg_wf upto_wf list_wf equal_wf nat_wf list_induction all_wf list_accum_wf map_wf filter_wf5 l_member_wf bnot_wf eq_int_wf map_nil_lemma list_accum_nil_lemma filter_nil_lemma map_cons_lemma list_accum_cons_lemma filter_cons_lemma bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int squash_wf true_wf iff_weakening_equal int_seg_properties nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis sqequalRule hypothesisEquality lambdaEquality applyEquality functionExtensionality natural_numberEquality setElimination rename because_Cache lambdaFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination sqequalAxiom functionEquality isect_memberEquality addEquality setEquality voidElimination voidEquality unionElimination equalityElimination productElimination dependent_pairFormation promote_hyp imageElimination universeEquality imageMemberEquality baseClosed int_eqEquality independent_pairFormation computeAll

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].
    (\mSigma{}(f[x]  |  x  <  n)  \msim{}  accumulate  (with  value  x  and  list  item  y):
                                            x  +  y
                                          over  list:
                                              filter(\mlambda{}x.(\mneg{}\msubb{}(x  =\msubz{}  0));map(\mlambda{}x.f[x];upto(n)))
                                          with  starting  value:
                                            0))



Date html generated: 2017_04_17-AM-08_25_41
Last ObjectModification: 2017_02_27-PM-04_47_54

Theory : list_1


Home Index