Nuprl Lemma : sum-as-accum
∀[n:ℕ]. ∀[f:ℕn ⟶ ℤ].
(Σ(f[x] | x < n) ~ accumulate (with value x and list item y):
x + y
over list:
map(λx.f[x];upto(n))
with starting value:
0))
Proof
Definitions occuring in Statement :
upto: upto(n)
,
sum: Σ(f[x] | x < k)
,
map: map(f;as)
,
list_accum: list_accum,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
,
int: ℤ
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
sum: Σ(f[x] | x < k)
,
sum_aux: sum_aux(k;v;i;x.f[x])
,
list_accum: list_accum,
map: map(f;as)
,
list_ind: list_ind,
upto: upto(n)
,
from-upto: [n, m)
,
ifthenelse: if b then t else f fi
,
lt_int: i <z j
,
bfalse: ff
,
nil: []
,
it: ⋅
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
sq_type: SQType(T)
,
guard: {T}
,
decidable: Dec(P)
,
or: P ∨ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
bool: 𝔹
,
unit: Unit
,
btrue: tt
,
uiff: uiff(P;Q)
,
less_than: a < b
,
less_than': less_than'(a;b)
,
true: True
,
squash: ↓T
,
subtype_rel: A ⊆r B
,
le: A ≤ B
,
nat_plus: ℕ+
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
bnot: ¬bb
,
assert: ↑b
Lemmas referenced :
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
int_seg_wf,
subtype_base_sq,
int_subtype_base,
list_accum_wf,
nil_wf,
decidable__le,
subtract_wf,
intformnot_wf,
itermSubtract_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
sum-unroll,
lt_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_lt_int,
top_wf,
subtype_rel_dep_function,
int_seg_subtype,
false_wf,
subtype_rel_self,
upto_decomp1,
map_append_sq,
list_accum_append,
map_wf,
decidable__lt,
lelt_wf,
upto_wf,
subtype_rel_list,
map_cons_lemma,
map_nil_lemma,
list_accum_cons_lemma,
list_accum_nil_lemma,
decidable__equal_int,
intformeq_wf,
int_formula_prop_eq_lemma,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
lambdaFormation,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
independent_functionElimination,
sqequalAxiom,
functionEquality,
instantiate,
cumulativity,
because_Cache,
addEquality,
equalityTransitivity,
equalitySymmetry,
unionElimination,
equalityElimination,
productElimination,
lessCases,
imageMemberEquality,
baseClosed,
imageElimination,
applyEquality,
dependent_set_memberEquality,
functionExtensionality,
promote_hyp
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[f:\mBbbN{}n {}\mrightarrow{} \mBbbZ{}].
(\mSigma{}(f[x] | x < n) \msim{} accumulate (with value x and list item y):
x + y
over list:
map(\mlambda{}x.f[x];upto(n))
with starting value:
0))
Date html generated:
2017_04_17-AM-08_25_28
Last ObjectModification:
2017_02_27-PM-04_48_11
Theory : list_1
Home
Index