Step
*
of Lemma
bag-admissable-well-founded
∀k:ℕ
∀[T:Type]
(T ~ ℕk
⇒ (∀[R:bag(T) ⟶ bag(T) ⟶ ℙ]
((∀as,bs:bag(T). Dec(R[as;bs]))
⇒ Order(bag(T);as,bs.R[as;bs])
⇒ bag-admissable(T;as,bs.R[as;bs])
⇒ WellFnd{i}(bag(T);as,bs.R[as;bs] ∧ (¬(as = bs ∈ bag(T)))))))
BY
{ (Auto THEN Using [`p',⌜k⌝] (BLemma `bag-ordering-wellfounded`)⋅ THEN Auto) }
1
1. k : ℕ
2. [T] : Type
3. T ~ ℕk
4. [R] : bag(T) ⟶ bag(T) ⟶ ℙ
5. ∀as,bs:bag(T). Dec(R[as;bs])
6. Order(bag(T);as,bs.R[as;bs])
7. bag-admissable(T;as,bs.R[as;bs])
⊢ Trans(bag(T);as,bs.R[as;bs] ∧ (¬(as = bs ∈ bag(T))))
2
.....decidable?.....
1. k : ℕ
2. [T] : Type
3. T ~ ℕk
4. [R] : bag(T) ⟶ bag(T) ⟶ ℙ
5. ∀as,bs:bag(T). Dec(R[as;bs])
6. Order(bag(T);as,bs.R[as;bs])
7. bag-admissable(T;as,bs.R[as;bs])
8. as : bag(T)
9. bs : bag(T)
⊢ Dec(R[as;bs] ∧ (¬(as = bs ∈ bag(T))))
3
1. k : ℕ
2. T : Type
3. T ~ ℕk
4. R : bag(T) ⟶ bag(T) ⟶ ℙ
5. ∀as,bs:bag(T). Dec(R[as;bs])
6. Order(bag(T);as,bs.R[as;bs])
7. bag-admissable(T;as,bs.R[as;bs])
8. as : bag(T)
9. bs : bag(T)
10. sub-bag(T;as;bs)
⊢ ¬(R[bs;as] ∧ (¬(bs = as ∈ bag(T))))
Latex:
Latex:
\mforall{}k:\mBbbN{}
\mforall{}[T:Type]
(T \msim{} \mBbbN{}k
{}\mRightarrow{} (\mforall{}[R:bag(T) {}\mrightarrow{} bag(T) {}\mrightarrow{} \mBbbP{}]
((\mforall{}as,bs:bag(T). Dec(R[as;bs]))
{}\mRightarrow{} Order(bag(T);as,bs.R[as;bs])
{}\mRightarrow{} bag-admissable(T;as,bs.R[as;bs])
{}\mRightarrow{} WellFnd\{i\}(bag(T);as,bs.R[as;bs] \mwedge{} (\mneg{}(as = bs))))))
By
Latex:
(Auto THEN Using [`p',\mkleeneopen{}k\mkleeneclose{}] (BLemma `bag-ordering-wellfounded`)\mcdot{} THEN Auto)
Home
Index