Nuprl Lemma : bag-admissable-well-founded
∀k:ℕ
  ∀[T:Type]
    (T ~ ℕk
    
⇒ (∀[R:bag(T) ⟶ bag(T) ⟶ ℙ]
          ((∀as,bs:bag(T).  Dec(R[as;bs]))
          
⇒ Order(bag(T);as,bs.R[as;bs])
          
⇒ bag-admissable(T;as,bs.R[as;bs])
          
⇒ WellFnd{i}(bag(T);as,bs.R[as;bs] ∧ (¬(as = bs ∈ bag(T)))))))
Proof
Definitions occuring in Statement : 
bag-admissable: bag-admissable(T;as,bs.R[as; bs])
, 
bag: bag(T)
, 
equipollent: A ~ B
, 
order: Order(T;x,y.R[x; y])
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
not: ¬A
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
trans: Trans(T;x,y.E[x; y])
, 
cand: A c∧ B
, 
guard: {T}
, 
order: Order(T;x,y.R[x; y])
, 
anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced : 
bag-ordering-wellfounded, 
bag_wf, 
not_wf, 
equal_wf, 
sub-bag_wf, 
bag-admissable_wf, 
order_wf, 
all_wf, 
decidable_wf, 
equipollent_wf, 
int_seg_wf, 
nat_wf, 
and_wf, 
decidable__equal_equipollent, 
decidable__cand, 
decidable__not, 
decidable__equal_bag, 
sub-bag-admissable
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
productEquality, 
applyEquality, 
functionExtensionality, 
cumulativity, 
universeEquality, 
voidElimination, 
because_Cache, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
productElimination, 
independent_pairFormation, 
hyp_replacement, 
equalitySymmetry, 
dependent_set_memberEquality, 
setEquality, 
isect_memberEquality
Latex:
\mforall{}k:\mBbbN{}
    \mforall{}[T:Type]
        (T  \msim{}  \mBbbN{}k
        {}\mRightarrow{}  (\mforall{}[R:bag(T)  {}\mrightarrow{}  bag(T)  {}\mrightarrow{}  \mBbbP{}]
                    ((\mforall{}as,bs:bag(T).    Dec(R[as;bs]))
                    {}\mRightarrow{}  Order(bag(T);as,bs.R[as;bs])
                    {}\mRightarrow{}  bag-admissable(T;as,bs.R[as;bs])
                    {}\mRightarrow{}  WellFnd\{i\}(bag(T);as,bs.R[as;bs]  \mwedge{}  (\mneg{}(as  =  bs))))))
Date html generated:
2016_10_25-AM-11_31_28
Last ObjectModification:
2016_07_12-AM-07_36_11
Theory : bags_2
Home
Index