Nuprl Lemma : bag-admissable-well-founded

k:ℕ
  ∀[T:Type]
    (T ~ ℕk
     (∀[R:bag(T) ⟶ bag(T) ⟶ ℙ]
          ((∀as,bs:bag(T).  Dec(R[as;bs]))
           Order(bag(T);as,bs.R[as;bs])
           bag-admissable(T;as,bs.R[as;bs])
           WellFnd{i}(bag(T);as,bs.R[as;bs] ∧ (as bs ∈ bag(T)))))))


Proof




Definitions occuring in Statement :  bag-admissable: bag-admissable(T;as,bs.R[as; bs]) bag: bag(T) equipollent: B order: Order(T;x,y.R[x; y]) int_seg: {i..j-} nat: wellfounded: WellFnd{i}(A;x,y.R[x; y]) decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T so_lambda: λ2y.t[x; y] prop: and: P ∧ Q so_apply: x[s1;s2] subtype_rel: A ⊆B not: ¬A false: False so_lambda: λ2x.t[x] so_apply: x[s] nat: trans: Trans(T;x,y.E[x; y]) cand: c∧ B guard: {T} order: Order(T;x,y.R[x; y]) anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced :  bag-ordering-wellfounded bag_wf not_wf equal_wf sub-bag_wf bag-admissable_wf order_wf all_wf decidable_wf equipollent_wf int_seg_wf nat_wf and_wf decidable__equal_equipollent decidable__cand decidable__not decidable__equal_bag sub-bag-admissable
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination independent_functionElimination hypothesis sqequalRule lambdaEquality productEquality applyEquality functionExtensionality cumulativity universeEquality voidElimination because_Cache functionEquality natural_numberEquality setElimination rename productElimination independent_pairFormation hyp_replacement equalitySymmetry dependent_set_memberEquality setEquality isect_memberEquality

Latex:
\mforall{}k:\mBbbN{}
    \mforall{}[T:Type]
        (T  \msim{}  \mBbbN{}k
        {}\mRightarrow{}  (\mforall{}[R:bag(T)  {}\mrightarrow{}  bag(T)  {}\mrightarrow{}  \mBbbP{}]
                    ((\mforall{}as,bs:bag(T).    Dec(R[as;bs]))
                    {}\mRightarrow{}  Order(bag(T);as,bs.R[as;bs])
                    {}\mRightarrow{}  bag-admissable(T;as,bs.R[as;bs])
                    {}\mRightarrow{}  WellFnd\{i\}(bag(T);as,bs.R[as;bs]  \mwedge{}  (\mneg{}(as  =  bs))))))



Date html generated: 2016_10_25-AM-11_31_28
Last ObjectModification: 2016_07_12-AM-07_36_11

Theory : bags_2


Home Index