Nuprl Lemma : decidable__equal_bag

[T:Type]. ((∀x,y:T.  Dec(x y ∈ T))  (∀xs,ys:bag(T).  Dec(xs ys ∈ bag(T))))


Proof




Definitions occuring in Statement :  bag: bag(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q)
Lemmas referenced :  bag_wf all_wf decidable_wf equal_wf deq-exists assert-bag-eq assert_wf bag-eq_wf decidable__assert decidable_functionality iff_weakening_uiff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality universeEquality productElimination independent_functionElimination rename dependent_functionElimination independent_pairFormation

Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}xs,ys:bag(T).    Dec(xs  =  ys)))



Date html generated: 2016_05_15-PM-08_00_40
Last ObjectModification: 2015_12_27-PM-04_15_55

Theory : bags_2


Home Index