Nuprl Lemma : decidable__equal_bag
∀[T:Type]. ((∀x,y:T.  Dec(x = y ∈ T)) 
⇒ (∀xs,ys:bag(T).  Dec(xs = ys ∈ bag(T))))
Proof
Definitions occuring in Statement : 
bag: bag(T)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
Lemmas referenced : 
bag_wf, 
all_wf, 
decidable_wf, 
equal_wf, 
deq-exists, 
assert-bag-eq, 
assert_wf, 
bag-eq_wf, 
decidable__assert, 
decidable_functionality, 
iff_weakening_uiff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
universeEquality, 
productElimination, 
independent_functionElimination, 
rename, 
dependent_functionElimination, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}xs,ys:bag(T).    Dec(xs  =  ys)))
Date html generated:
2016_05_15-PM-08_00_40
Last ObjectModification:
2015_12_27-PM-04_15_55
Theory : bags_2
Home
Index