Nuprl Lemma : bag-eq_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:bag(T)].  (bag-eq(eq;as;bs) ∈ 𝔹)


Proof




Definitions occuring in Statement :  bag-eq: bag-eq(eq;as;bs) bag: bag(T) deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-eq: bag-eq(eq;as;bs) so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s]
Lemmas referenced :  band_wf bag-all_wf eq_int_wf bag-count_wf nat_wf lt_int_wf bag_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality hypothesis applyEquality setElimination rename because_Cache natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:bag(T)].    (bag-eq(eq;as;bs)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_15-PM-08_00_22
Last ObjectModification: 2015_12_27-PM-04_16_00

Theory : bags_2


Home Index