Nuprl Lemma : bag-count_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[bs:bag(T)].  ((#x in bs) ∈ ℕ)


Proof




Definitions occuring in Statement :  bag-count: (#x in bs) bag: bag(T) deq: EqDecider(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  bag: bag(T) member: t ∈ T quotient: x,y:A//B[x; y] and: P ∧ Q uall: [x:A]. B[x] all: x:A. B[x] implies:  Q bag-count: (#x in bs) so_lambda: λ2x.t[x] deq: EqDecider(T) so_apply: x[s] uimplies: supposing a nat: sq_type: SQType(T) guard: {T} prop: iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top squash: T true: True ge: i ≥  count: count(P;L) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) eqof: eqof(d) ifthenelse: if then else fi  le: A ≤ B less_than': less_than'(a;b) bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  nat_wf list_wf permutation-invariant equal_wf count_wf subtype_base_sq set_subtype_base le_wf int_subtype_base cons_wf decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf intformimplies_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formual_prop_imp_lemma iff_weakening_equal int_formula_prop_wf decidable__le nat_properties intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma permutation_wf equal-wf-base bag_wf deq_wf count-append nil_wf count-single reduce_cons_lemma bool_wf eqtt_to_assert safe-assert-deq itermAdd_wf int_term_value_add_lemma add_nat_wf false_wf add-is-int-iff eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot ifthenelse_wf
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity pointwiseFunctionalityForEquality cut introduction extract_by_obid hypothesis sqequalRule pertypeElimination productElimination thin equalityTransitivity equalitySymmetry isectElimination cumulativity hypothesisEquality lambdaFormation because_Cache rename lambdaEquality applyEquality setElimination independent_functionElimination instantiate independent_isectElimination intEquality natural_numberEquality dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation imageElimination equalityUniverse levelHypothesis imageMemberEquality baseClosed universeEquality computeAll dependent_set_memberEquality applyLambdaEquality productEquality isect_memberFormation axiomEquality equalityElimination addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].    ((\#x  in  bs)  \mmember{}  \mBbbN{})



Date html generated: 2018_05_21-PM-09_45_48
Last ObjectModification: 2017_07_26-PM-06_29_52

Theory : bags_2


Home Index