Nuprl Lemma : count-single

[P,x:Top].  (count(P;[x]) if then else fi  0)


Proof




Definitions occuring in Statement :  count: count(P;L) cons: [a b] nil: [] ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top apply: a add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T count: count(P;L) all: x:A. B[x] top: Top
Lemmas referenced :  reduce_cons_lemma reduce_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[P,x:Top].    (count(P;[x])  \msim{}  if  P  x  then  1  else  0  fi    +  0)



Date html generated: 2016_05_14-AM-07_41_33
Last ObjectModification: 2015_12_26-PM-02_51_20

Theory : list_1


Home Index