Nuprl Lemma : count_wf

[A:Type]. ∀[P:A ⟶ 𝔹]. ∀[L:A List].  (count(P;L) ∈ ℕ)


Proof




Definitions occuring in Statement :  count: count(P;L) list: List nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T count: count(P;L) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  reduce_wf nat_wf ifthenelse_wf bool_wf eqtt_to_assert nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf false_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality dependent_set_memberEquality addEquality applyEquality functionExtensionality intEquality natural_numberEquality setElimination rename lambdaFormation unionElimination equalityElimination because_Cache productElimination independent_isectElimination dependent_functionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll equalityTransitivity equalitySymmetry promote_hyp instantiate independent_functionElimination axiomEquality functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:A  List].    (count(P;L)  \mmember{}  \mBbbN{})



Date html generated: 2017_04_14-AM-09_28_04
Last ObjectModification: 2017_02_27-PM-04_01_43

Theory : list_1


Home Index