Nuprl Lemma : bag-all_wf
∀[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[bs:bag(T)]. (bag-all(x.p[x];bs) ∈ 𝔹)
Proof
Definitions occuring in Statement :
bag-all: bag-all(x.p[x];bs)
,
bag: bag(T)
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
bag-all: bag-all(x.p[x];bs)
,
so_lambda: λ2x y.t[x; y]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
band: p ∧b q
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
prop: ℙ
,
so_apply: x[s1;s2]
,
uimplies: b supposing a
,
comm: Comm(T;op)
,
infix_ap: x f y
,
squash: ↓T
,
true: True
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
assoc: Assoc(T;op)
,
top: Top
,
uiff: uiff(P;Q)
,
so_apply: x[s]
Lemmas referenced :
bag-reduce_wf,
bool_wf,
btrue_wf,
equal_wf,
squash_wf,
true_wf,
band_commutes,
iff_weakening_equal,
band_assoc,
eqtt_to_assert,
bag-map_wf,
bag_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
lambdaEquality,
hypothesisEquality,
lambdaFormation,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
independent_functionElimination,
because_Cache,
independent_isectElimination,
applyEquality,
imageElimination,
natural_numberEquality,
imageMemberEquality,
baseClosed,
universeEquality,
productElimination,
isect_memberEquality,
axiomEquality,
voidElimination,
voidEquality,
cumulativity,
functionExtensionality,
functionEquality
Latex:
\mforall{}[T:Type]. \mforall{}[p:T {}\mrightarrow{} \mBbbB{}]. \mforall{}[bs:bag(T)]. (bag-all(x.p[x];bs) \mmember{} \mBbbB{})
Date html generated:
2017_10_01-AM-08_52_13
Last ObjectModification:
2017_07_26-PM-04_33_53
Theory : bags
Home
Index