Nuprl Lemma : bag-all_wf

[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[bs:bag(T)].  (bag-all(x.p[x];bs) ∈ 𝔹)


Proof




Definitions occuring in Statement :  bag-all: bag-all(x.p[x];bs) bag: bag(T) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-all: bag-all(x.p[x];bs) so_lambda: λ2y.t[x; y] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  bfalse: ff prop: so_apply: x[s1;s2] uimplies: supposing a comm: Comm(T;op) infix_ap: y squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q assoc: Assoc(T;op) top: Top uiff: uiff(P;Q) so_apply: x[s]
Lemmas referenced :  bag-reduce_wf bool_wf btrue_wf equal_wf squash_wf true_wf band_commutes iff_weakening_equal band_assoc eqtt_to_assert bag-map_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality hypothesisEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination because_Cache independent_isectElimination applyEquality imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination isect_memberEquality axiomEquality voidElimination voidEquality cumulativity functionExtensionality functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[bs:bag(T)].    (bag-all(x.p[x];bs)  \mmember{}  \mBbbB{})



Date html generated: 2017_10_01-AM-08_52_13
Last ObjectModification: 2017_07_26-PM-04_33_53

Theory : bags


Home Index