Nuprl Lemma : band_commutes
∀[a,b:𝔹].  a ∧b b = b ∧b a
Proof
Definitions occuring in Statement : 
band: p ∧b q, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
prop: ℙ
Lemmas referenced : 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
equalityElimination, 
sqequalRule, 
inlEquality, 
axiomEquality, 
natural_numberEquality, 
extract_by_obid, 
isectElimination, 
intEquality, 
baseClosed, 
because_Cache, 
hypothesis, 
inrEquality, 
isect_memberEquality, 
hypothesisEquality
Latex:
\mforall{}[a,b:\mBbbB{}].    a  \mwedge{}\msubb{}  b  =  b  \mwedge{}\msubb{}  a
Date html generated:
2017_04_14-AM-07_29_43
Last ObjectModification:
2017_02_27-PM-02_58_11
Theory : bool_1
Home
Index