Nuprl Lemma : bag-ordering-wellfounded

p:ℕ
  ∀[T:Type]
    (T ~ ℕp
     (∀[R:bag(T) ⟶ bag(T) ⟶ ℙ]
          (Trans(bag(T);a,b.R[a;b])
           (∀a,b:bag(T).  Dec(R[a;b]))
           (∀a,b:bag(T).  (sub-bag(T;a;b)  R[b;a])))
           WellFnd{i}(bag(T);a,b.R[a;b]))))


Proof




Definitions occuring in Statement :  sub-bag: sub-bag(T;as;bs) bag: bag(T) equipollent: B trans: Trans(T;x,y.E[x; y]) int_seg: {i..j-} nat: wellfounded: WellFnd{i}(A;x,y.R[x; y]) decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: infix_ap: y so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] nat: trans: Trans(T;x,y.E[x; y]) no-descending-chain: no-descending-chain(T;<) exists: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A
Lemmas referenced :  no-descending-chain-implies-wellfounded bag_wf all_wf sub-bag_wf not_wf decidable_wf trans_wf equipollent_wf int_seg_wf nat_wf bag-dickson-lemma int_seg_subtype_nat false_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination applyEquality because_Cache sqequalRule lambdaEquality functionEquality cumulativity universeEquality natural_numberEquality setElimination rename dependent_functionElimination productElimination dependent_pairFormation independent_isectElimination independent_pairFormation

Latex:
\mforall{}p:\mBbbN{}
    \mforall{}[T:Type]
        (T  \msim{}  \mBbbN{}p
        {}\mRightarrow{}  (\mforall{}[R:bag(T)  {}\mrightarrow{}  bag(T)  {}\mrightarrow{}  \mBbbP{}]
                    (Trans(bag(T);a,b.R[a;b])
                    {}\mRightarrow{}  (\mforall{}a,b:bag(T).    Dec(R[a;b]))
                    {}\mRightarrow{}  (\mforall{}a,b:bag(T).    (sub-bag(T;a;b)  {}\mRightarrow{}  (\mneg{}R[b;a])))
                    {}\mRightarrow{}  WellFnd\{i\}(bag(T);a,b.R[a;b]))))



Date html generated: 2016_05_15-PM-08_10_03
Last ObjectModification: 2015_12_27-PM-04_12_25

Theory : bags_2


Home Index