Nuprl Lemma : no-descending-chain-implies-wellfounded
∀[T:Type]. ∀[<:T ⟶ T ⟶ ℙ].
  ((∀x,y,z:T.  ((x < y) 
⇒ (y < z) 
⇒ (x < z)))
  
⇒ (∀x,y:T.  Dec(x < y))
  
⇒ no-descending-chain(T;<)
  
⇒ WellFnd{i}(T;x,y.x < y))
Proof
Definitions occuring in Statement : 
no-descending-chain: no-descending-chain(T;<)
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
no-descending-chain: no-descending-chain(T;<)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
descending-chain-barred-implies-wellfounded, 
not_wf, 
decidable__not, 
nat_wf, 
no-descending-chain_wf, 
all_wf, 
decidable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
dependent_functionElimination, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[<:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y,z:T.    ((x  <  y)  {}\mRightarrow{}  (y  <  z)  {}\mRightarrow{}  (x  <  z)))
    {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  <  y))
    {}\mRightarrow{}  no-descending-chain(T;<)
    {}\mRightarrow{}  WellFnd\{i\}(T;x,y.x  <  y))
Date html generated:
2016_05_13-PM-03_52_06
Last ObjectModification:
2015_12_26-AM-10_17_15
Theory : bar-induction
Home
Index