Nuprl Lemma : no-descending-chain-implies-wellfounded

[T:Type]. ∀[<:T ⟶ T ⟶ ℙ].
  ((∀x,y,z:T.  ((x < y)  (y < z)  (x < z)))
   (∀x,y:T.  Dec(x < y))
   no-descending-chain(T;<)
   WellFnd{i}(T;x,y.x < y))


Proof




Definitions occuring in Statement :  no-descending-chain: no-descending-chain(T;<) wellfounded: WellFnd{i}(A;x,y.R[x; y]) decidable: Dec(P) uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T infix_ap: y all: x:A. B[x] prop: no-descending-chain: no-descending-chain(T;<) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  descending-chain-barred-implies-wellfounded not_wf decidable__not nat_wf no-descending-chain_wf all_wf decidable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis independent_functionElimination sqequalRule dependent_functionElimination because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[<:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y,z:T.    ((x  <  y)  {}\mRightarrow{}  (y  <  z)  {}\mRightarrow{}  (x  <  z)))
    {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  <  y))
    {}\mRightarrow{}  no-descending-chain(T;<)
    {}\mRightarrow{}  WellFnd\{i\}(T;x,y.x  <  y))



Date html generated: 2016_05_13-PM-03_52_06
Last ObjectModification: 2015_12_26-AM-10_17_15

Theory : bar-induction


Home Index