Nuprl Lemma : no-descending-chain_wf

[T:Type]. ∀[<:T ⟶ T ⟶ ℙ].  (no-descending-chain(T;<) ∈ ℙ)


Proof




Definitions occuring in Statement :  no-descending-chain: no-descending-chain(T;<) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T no-descending-chain: no-descending-chain(T;<) so_lambda: λ2x.t[x] nat: prop: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q so_apply: x[s]
Lemmas referenced :  all_wf nat_wf exists_wf int_seg_wf not_wf infix_ap_wf int_seg_subtype_nat false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis cumulativity hypothesisEquality lambdaEquality because_Cache natural_numberEquality setElimination rename instantiate universeEquality applyEquality independent_isectElimination independent_pairFormation lambdaFormation axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[<:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (no-descending-chain(T;<)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_52_04
Last ObjectModification: 2015_12_26-AM-10_17_00

Theory : bar-induction


Home Index